Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes

被引:238
作者
Moore, Sam [1 ]
Evans, Chris D. [2 ]
Page, Susan E. [3 ]
Garnett, Mark H. [4 ]
Jones, Tim G. [5 ]
Freeman, Chris [5 ]
Hooijer, Aljosja [6 ]
Wiltshire, Andrew J. [7 ]
Limin, Suwido H. [8 ]
Gauci, Vincent [1 ]
机构
[1] Open Univ, Dept Environm Earth & Ecosyst, CEPSAR, Milton Keynes MK7 6AA, Bucks, England
[2] Environm Ctr Wales, Ctr Ecol & Hydrol, Bangor LL57 2UW, Gwynedd, Wales
[3] Univ Leicester, Dept Geog, Leicester LE1 7RH, Leics, England
[4] Nat Environm Res Council Radiocarbon Facil, E Kilbride G75 0QF, Lanark, Scotland
[5] Bangor Univ, Sch Biol Sci, Bangor LL57 2UW, Gwynedd, Wales
[6] Deltares, NL-2600 MH Delft, Netherlands
[7] Met Off Hadley Ctr, Exeter EX1 3PB, Devon, England
[8] Univ Palangka Raya, CIMTROP, Palangka Raya 73112, Central Kaliman, Indonesia
基金
英国自然环境研究理事会;
关键词
ENVIRONMENT SIMULATOR JULES; MODEL DESCRIPTION; FOREST; EXPORT; PEAT; KALIMANTAN; INDONESIA; ACCUMULATION; VEGETATION; EMISSIONS;
D O I
10.1038/nature11818
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Tropical peatlands contain one of the largest pools of terrestrial organic carbon, amounting to about 89,000 teragrams(1) (1 Tg is a billion kilograms). Approximately 65 per cent of this carbon store is in Indonesia, where extensive anthropogenic degradation in the form of deforestation, drainage and fire are converting it into a globally significant source of atmospheric carbon dioxide(1-3). Here we quantify the annual export of fluvial organic carbon from both intact peat swamp forest and peat swamp forest subject to past anthropogenic disturbance. We find that the total fluvial organic carbon flux from disturbed peat swamp forest is about 50 per cent larger than that from intact peat swamp forest. By carbon-14 dating of dissolved organic carbon (which makes up over 91 per cent of total organic carbon), we find that leaching of dissolved organic carbon from intact peat swamp forest is derived mainly from recent primary production (plant growth). In contrast, dissolved organic carbon from disturbed peat swamp forest consists mostly of much older (centuries to millennia) carbon from deep within the peat column. When we include the fluvial carbon loss term, which is often ignored, in the peatland carbon budget, we find that it increases the estimate of total carbon lost from the disturbed peatlands in our study by 22 per cent. We further estimate that since 1990 peatland disturbance has resulted in a 32 per cent increase in fluvial organic carbon flux from southeast Asia-an increase that is more than half of the entire annual fluvial organic carbon flux from all European peatlands. Our findings emphasize the need to quantify fluvial carbon losses in order to improve estimates of the impact of deforestation and drainage on tropical peatland carbon balances.
引用
收藏
页码:660 / +
页数:5
相关论文
共 42 条
[1]  
[Anonymous], 2009, 19 WORLD C SOIL SCI
[2]   The boundless carbon cycle [J].
Battin, Tom J. ;
Luyssaert, Sebastiaan ;
Kaplan, Louis A. ;
Aufdenkampe, Anthony K. ;
Richter, Andreas ;
Tranvik, Lars J. .
NATURE GEOSCIENCE, 2009, 2 (09) :598-600
[3]   Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean [J].
Benner, R ;
Benitez-Nelson, B ;
Kaiser, K ;
Amon, RMW .
GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (05)
[4]   The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes [J].
Best, M. J. ;
Pryor, M. ;
Clark, D. B. ;
Rooney, G. G. ;
Essery, R. L. H. ;
Menard, C. B. ;
Edwards, J. M. ;
Hendry, M. A. ;
Porson, A. ;
Gedney, N. ;
Mercado, L. M. ;
Sitch, S. ;
Blyth, E. ;
Boucher, O. ;
Cox, P. M. ;
Grimmond, C. S. B. ;
Harding, R. J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (03) :677-699
[5]   Carbon balance of UK peatlands: current state of knowledge and future research challenges [J].
Billett, M. F. ;
Charman, D. J. ;
Clark, J. M. ;
Evans, C. D. ;
Evans, M. G. ;
Ostle, N. J. ;
Worrall, F. ;
Burden, A. ;
Dinsmore, K. J. ;
Jones, T. ;
McNamara, N. P. ;
Parry, L. ;
Rowson, J. G. ;
Rose, R. .
CLIMATE RESEARCH, 2010, 45 (01) :13-29
[6]  
Boehm H.-D. V., 2001, 22 AS C REM SENS EME, V1, P439
[7]  
Bruijnzeel L. A., 1990, HYDROLOGY MOIST TROP
[8]   Millennial-aged organic carbon subsidies to a modern river food web [J].
Caraco, Nina ;
Bauer, James E. ;
Cole, Jonathan J. ;
Petsch, Steven ;
Raymond, Peter .
ECOLOGY, 2010, 91 (08) :2385-2393
[9]   The Joint UK Land Environment Simulator (JULES), model description - Part 2: Carbon fluxes and vegetation dynamics [J].
Clark, D. B. ;
Mercado, L. M. ;
Sitch, S. ;
Jones, C. D. ;
Gedney, N. ;
Best, M. J. ;
Pryor, M. ;
Rooney, G. G. ;
Essery, R. L. H. ;
Blyth, E. ;
Boucher, O. ;
Harding, R. J. ;
Huntingford, C. ;
Cox, P. M. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (03) :701-722
[10]   Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget [J].
Cole, J. J. ;
Prairie, Y. T. ;
Caraco, N. F. ;
McDowell, W. H. ;
Tranvik, L. J. ;
Striegl, R. G. ;
Duarte, C. M. ;
Kortelainen, P. ;
Downing, J. A. ;
Middelburg, J. J. ;
Melack, J. .
ECOSYSTEMS, 2007, 10 (01) :171-184