Mining Probabilistic Frequent Itemsets with Exact Methods

被引:0
作者
Li, Hai-Feng [1 ]
Wang, Yue [1 ]
机构
[1] Cent Univ Finance & Econ, Sch Informat, Beijing 100081, Peoples R China
来源
FUZZY SYSTEMS AND DATA MINING II | 2016年 / 293卷
关键词
Uncertain Database; Exact Database; Probabilistic Frequent Itemset Mining; Exact Frequent Itemset Mining; Data Mining;
D O I
10.3233/978-1-61499-722-1-179
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Probabilistic frequent itemset mining over uncertain databases is a challenging problem. The state-of-the-art algorithm uses O(nlog(2)n) time complexity to conduct the mining. We focus on this problem and design a framework, which can discover the probabilistic frequent itemsets with traditional exact frequent itemset mining methods; thus, the time complexity can be reduced to O(n). In this framework, we supply a minimum confidence to convert the uncertain database to exact database; furthermore, a sampling method is used to find the reasonable minimum confidence so that the accuracy is guaranteed. Our experiments show our method can significantly outperform the existing algorithm.
引用
收藏
页码:179 / 185
页数:7
相关论文
共 9 条
[1]   A Survey of Uncertain Data Algorithms and Applications [J].
Aggarwal, Charu C. ;
Yu, Philip S. .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2009, 21 (05) :609-623
[2]  
Bernecker T., P SIGKDD 2009
[3]  
Calders T., P ICDM 2010
[4]  
Chui C. K., P PAKDD 2007
[5]   Frequent pattern mining: current status and future directions [J].
Han, Jiawei ;
Cheng, Hong ;
Xin, Dong ;
Yan, Xifeng .
DATA MINING AND KNOWLEDGE DISCOVERY, 2007, 15 (01) :55-86
[6]  
Sun L., P KDD 2010
[7]  
Tang P., P ACMSE 2011
[8]  
Tong Y., P VLDB 2012
[9]  
Zhang Q., P SIGMOD 2008