Truncated Fourier-series approximation of the time-domain radiative transfer equation using finite elements

被引:15
作者
Pulkkinen, Aki [1 ]
Tarvainen, Tanja [1 ,2 ]
机构
[1] Univ Eastern Finland, Dept Appl Phys, Kuopio 70211, Finland
[2] UCL, Dept Comp Sci, London WC1E 6BT, England
基金
芬兰科学院;
关键词
DIFFUSE OPTICAL TOMOGRAPHY; PHOTON MIGRATION; TRANSPORT-EQUATION; CONTINUOUS-WAVE; RECONSTRUCTION; MODEL; SPECTROSCOPY; SCATTERING; SCHEME; MEDIA;
D O I
10.1364/JOSAA.30.000470
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The radiative transfer equation (RTE) is widely accepted to accurately describe light transport in a medium with scattering particles, and it has been successfully applied as a light-transport model, for example, in diffuse optical tomography. Due to the computationally expensive nature of the RTE, most of these applications have been in the frequency domain. In this paper, an efficient solution method for the time-domain RTE is proposed. The method is based on solving the frequency-domain RTE at multiple modulation frequencies and using the Fourier-series representation of the radiance to obtain approximation of the time-domain solution. The approach is tested with simulations. The results show that the method can be used to obtain the solution of the time-domain RTE with good accuracy and with significantly fewer computational resources than are needed in the direct time-domain solution. (C) 2013 Optical Society of America
引用
收藏
页码:470 / 478
页数:9
相关论文
共 64 条
[51]   Frequency domain optical tomography based on the equation of radiative transfer [J].
Ren, Kui ;
Bal, Guillaume ;
Hielscher, Andreas H. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (04) :1463-1489
[52]   Radiative transfer with finite elements -: I.: Basic method and tests [J].
Richling, S ;
Meinköhn, E ;
Kryzhevoi, N ;
Kanschat, G .
ASTRONOMY & ASTROPHYSICS, 2001, 380 (02) :776-788
[53]   A 32-channel time-resolved instrument for medical optical tomography [J].
Schmidt, FEW ;
Fry, ME ;
Hillman, EMC ;
Hebden, JC ;
Delpy, DT .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2000, 71 (01) :256-265
[54]   Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution [J].
Selb, Juliette ;
Dale, Anders M. ;
Boas, David A. .
OPTICS EXPRESS, 2007, 15 (25) :16400-16412
[55]   Time-gated optical system for depth-resolved functional brain imaging [J].
Selb, Juliette ;
Joseph, Danny K. ;
Boas, David A. .
JOURNAL OF BIOMEDICAL OPTICS, 2006, 11 (04)
[56]   Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions [J].
Tarvainen, T ;
Vauhkonen, M ;
Kolehmainen, V ;
Arridge, SR ;
Kaipio, JP .
PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (20) :4913-4930
[57]   Hybrid radiative-transfer-diffusion model for optical tomography [J].
Tarvainen, T ;
Vauhkonen, M ;
Kolehmainen, V ;
Kaipio, JP .
APPLIED OPTICS, 2005, 44 (06) :876-886
[58]   Gauss-Newton reconstruction method for optical tomography using the finite element solution of the radiative transfer equation [J].
Tarvainen, T. ;
Vauhkonen, M. ;
Arridge, S. R. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2008, 109 (17-18) :2767-2778
[59]   An approximation error approach for compensating for modelling errors between the radiative transfer equation and the diffusion approximation in diffuse optical tomography [J].
Tarvainen, T. ;
Kolehmainen, V. ;
Pulkkinen, A. ;
Vauhkonen, M. ;
Schweiger, M. ;
Arridge, S. R. ;
Kaipio, J. P. .
INVERSE PROBLEMS, 2010, 26 (01)
[60]   A finite-element model of electron transport in radiation therapy and a related inverse problem [J].
Tervo, J ;
Kolmonen, P ;
Vauhkonen, M ;
Heikkinen, LM ;
Kaipio, JP .
INVERSE PROBLEMS, 1999, 15 (05) :1345-1361