Mechanism of fast surface self-diffusion of an organic glass

被引:54
作者
Capaccioli, S. [1 ,2 ]
Ngai, K. L. [1 ]
Paluch, M. [3 ]
Prevosto, D. [2 ]
机构
[1] Univ Pisa, Phys Dept, I-56127 Pisa, Italy
[2] CNR, IPCF, Inst Chem & Phys Proc, I-56127 Pisa, Italy
[3] Univ Silesia, Inst Phys, PL-40007 Katowice, Poland
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 05期
关键词
MOLECULAR MOBILITY; POLYMER-FILMS; SECONDARY RELAXATIONS; TRANSITION DYNAMICS; INTERACTING ARRAYS; POLYSTYRENE; FORMERS; INDOMETHACIN; TEMPERATURES; LIQUIDS;
D O I
10.1103/PhysRevE.86.051503
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Zhu et al. [L. Zhu, C. W. Brian, S. F. Swallen, P. T. Straus, M. D. Ediger, and L. Yu, Phys. Rev. Lett. 106, 256103 (2011)] measured the surface self-diffusion for an organic glass former, indomethacin, and found surface diffusion is more than 10(6) times faster than bulk diffusion at temperatures around T-g. With the help of dielectric relaxation and differential scanning calorimetry measurements on bulk indomethacin, and analysis of the data using the coupling model, we provide a quantitative explanation. We find the bulk alpha-relaxation time is longer than the primitive relaxation time also by about six orders of magnitude in a range of temperature above and below the bulk T-g. Thus, the cause of the fast surface diffusion is the nearly vanishing of intermolecular coupling of relaxation and diffusion at the surface. The results of related experimental studies of enhanced relaxation and diffusion at the surface of other glass formers also have been analyzed and quantitatively explained. Our predictions on surface diffusion from the coupling model are compared with that given by the random first order transition theory.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Surface Self-Diffusion of an Organic Glass
    Zhu, L.
    Brian, C. W.
    Swallen, S. F.
    Straus, P. T.
    Ediger, M. D.
    Yu, L.
    PHYSICAL REVIEW LETTERS, 2011, 106 (25)
  • [2] Surface Self-Diffusion of Organic Glasses
    Brian, Caleb W.
    Yu, Lian
    JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 117 (50) : 13303 - 13309
  • [3] Glass Transition and Self-Diffusion of Unentangled Polymer Melts Nanoconfined by Different Interfaces
    Katsumata, Reika
    Dulaney, Austin R.
    Kim, Chae Bin
    Ellison, Christopher J.
    MACROMOLECULES, 2018, 51 (19) : 7509 - 7517
  • [4] Relationship between diffusion, self-diffusion and viscosity
    Avramov, I.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2009, 355 (10-12) : 745 - 747
  • [5] Precise Control of Molecular Self-Diffusion in Isoreticular and Multivariate Metal-Organic Frameworks
    Osborn Popp, Thomas M.
    Plantz, Ariel Z.
    Yaghi, Omar M.
    Reimer, Jeffrey A.
    CHEMPHYSCHEM, 2020, 21 (01) : 32 - 35
  • [6] Scaling Relations for Temperature Dependences of the Surface Self-Diffusion Coefficient in Crystallized Molecular Glasses
    Mokshin, A. V.
    Galimzyanov, B. N.
    Yarullin, D. T.
    JETP LETTERS, 2019, 110 (07) : 511 - 516
  • [7] Self-Diffusion of Supercooled Tris-naphthylbenzene
    Swallen, Stephen F.
    Traynor, Katherine
    McMahon, Robert J.
    Ediger, M. D.
    Mates, Thomas E.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (14) : 4600 - 4608
  • [8] Self-diffusion coefficient as a function of the thermodynamic factor
    Puelles, M. Sampayo
    Hoyuelos, M.
    PHYSICAL REVIEW E, 2024, 110 (01)
  • [9] Experimental Measurement of Self-Diffusion in a Strongly Coupled Plasma
    Strickler, T. S.
    Langin, T. K.
    McQuillen, P.
    Daligault, J.
    Killian, T. C.
    PHYSICAL REVIEW X, 2016, 6 (02):
  • [10] MOLECULAR-DYNAMICS AND SELF-DIFFUSION IN SUPERCRITICAL WATER
    KALINICHEV, AG
    BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1993, 97 (07): : 872 - 876