Mapping complex mode volumes with cavity perturbation theory

被引:41
作者
Cognee, K. G. [1 ,2 ]
Yan, W. [1 ]
La China, F. [3 ]
Balestri, D. [3 ]
Intonti, F. [3 ]
Gurioli, M. [3 ]
Koenderink, A. F. [2 ]
Lalanne, P. [1 ]
机构
[1] Univ Bordeaux, Inst Opt, CNRS, LP2N, F-33400 Talence, France
[2] AMOLF, Ctr Nanophoton, Sci Pk 104, NL-1098 XG Amsterdam, Netherlands
[3] Univ Florence, LENS, I-50019 Sesto Fiorentino, Italy
关键词
SHIFTS;
D O I
10.1364/OPTICA.6.000269
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Microcavities and nanoresonators are characterized by their quality factors (Q) and mode volumes (V). While Q is unambiguously defined, there are still questions on V and, in particular, on its complex-valued character, whose imaginary part is linked to the non-Hermitian nature of open systems. Helped by cavity perturbation theory and near-field experimental data, we clarify the physics captured by the imaginary part of V and show how a mapping of the spatial distribution of both the real and imaginary parts can be directly inferred from perturbation measurements. This result shows that the mathematically abstract complex mode V, in fact, is directly observable. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:269 / 273
页数:5
相关论文
共 27 条
[1]  
[Anonymous], 2013, ADV FDTD COMPUTATION
[2]   Deterministic coupling of single quantum dots to single nanocavity modes [J].
Badolato, A ;
Hennessy, K ;
Atatüre, M ;
Dreiser, J ;
Hu, E ;
Petroff, PM ;
Imamoglu, A .
SCIENCE, 2005, 308 (5725) :1158-1161
[3]  
Bethe H., 1943, D1117 NDRC CORN U
[4]   Magnetic Light-Matter Interactions in a Photonic Crystal Nanocavity [J].
Burresi, M. ;
Kampfrath, T. ;
van Oosten, D. ;
Prangsma, J. C. ;
Song, B. S. ;
Noda, S. ;
Kuipers, L. .
PHYSICAL REVIEW LETTERS, 2010, 105 (12)
[5]   Ultra-subwavelength phase-sensitive Fano-imaging of localized photonic modes [J].
Caselli, Niccolo ;
Intonti, Francesca ;
La China, Federico ;
Riboli, Francesco ;
Gerardino, Annamaria ;
Bao, Wei ;
Bargioni, Alexander Weber ;
Li, Lianhe ;
Linfield, Edmund H. ;
Pagliano, Francesco ;
Fiore, Andrea ;
Gurioli, Massimo .
LIGHT-SCIENCE & APPLICATIONS, 2015, 4 :e326-e326
[6]  
Gérard JM, 2003, TOP APPL PHYS, V90, P269
[7]   Optical Microresonators for Sensing and Transduction: A Materials Perspective [J].
Heylman, Kevin D. ;
Knapper, Kassandra A. ;
Horak, Erik H. ;
Rea, Morgan T. ;
Vanga, Sudheer K. ;
Goldsmith, Randall H. .
ADVANCED MATERIALS, 2017, 29 (30)
[8]   Spectral tuning and near-field imaging of photonic crystal microcavities [J].
Intonti, Francesca ;
Vignolini, Silvia ;
Riboli, Francesco ;
Vinattieri, Anna ;
Wiersma, Diederik S. ;
Colocci, Marcello ;
Balet, Laurent ;
Monat, Christelle ;
Zinoni, Carl ;
Li, Lianhe H. ;
Houdre, Romuald ;
Francardi, Marco ;
Gerardino, Annamaria ;
Fiore, Andrea ;
Gurioli, Massimo .
PHYSICAL REVIEW B, 2008, 78 (04)
[9]   MICROWAVE CAVITY PERTURBATION TECHNIQUE .1. PRINCIPLES [J].
KLEIN, O ;
DONOVAN, S ;
DRESSEL, M ;
GRUNER, G .
INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 1993, 14 (12) :2423-2457
[10]   Controlling the resonance of a photonic crystal microcavity by a near-field probe [J].
Koenderink, AF ;
Kafesaki, M ;
Buchler, BC ;
Sandoghdar, V .
PHYSICAL REVIEW LETTERS, 2005, 95 (15)