Backscatter-NOMA: Symbiotic System of Cellular and Internet-of-Things Networks

被引:164
作者
Zhang, Qianqian [1 ,2 ]
Zhang, Lin [1 ,2 ]
Liang, Ying-Chang [2 ]
Kam, Pooi-Yuen [2 ]
机构
[1] Univ Elect Sci & Technol China, Natl Key Lab Sci & Technol Commun, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Ctr Intelligent Networking & Commun, Chengdu 611731, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-orthogonal multiple access (NOMA); Internet-of-Things (IoT); ambient backscatter communication (AmBC); symbiotic radio (SR); outage probability; ergodic rate; NONORTHOGONAL MULTIPLE-ACCESS; PERFORMANCE ANALYSIS; WIRELESS NETWORKS;
D O I
10.1109/ACCESS.2019.2897822
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Non-orthogonal multiple access (NOMA) is envisioned as a key technology to enhance the spectrum efficiency for 5G cellular networks. Meanwhile, ambient backscatter communication is a promising solution to the Internet of Things (IoT), due to its high spectrum efficiency and power efficiency. In this paper, we are interested in a symbiotic system of cellular and IoT networks and propose a backscatter-NOMA system, which incorporates a downlink NOMA system with a backscatter device (BD). In the proposed system, the base station (BS) transmits information to two cellular users according to the NOMA protocol, while a BD transmits its information over the BS signals to one cellular user using the passive radio technology. In particular, if the BS only serves the cellular user that decodes BD information, the backscatter-NOMA system turns into a symbiotic radio (SR) system. We derive the expressions of the outage probabilities and the ergodic rates and analyze the corresponding diversity orders and slopes for both backscatter-NOMA and SR systems. Finally, we provide the numerical results to verify the theoretical analysis and demonstrate the interrelationship between the cellular networks and the IoT networks.
引用
收藏
页码:20000 / 20013
页数:14
相关论文
共 36 条
[1]  
Al-Imari M, 2014, 2014 11TH INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATIONS SYSTEMS (ISWCS), P781, DOI 10.1109/ISWCS.2014.6933459
[2]   What Will 5G Be? [J].
Andrews, Jeffrey G. ;
Buzzi, Stefano ;
Choi, Wan ;
Hanly, Stephen V. ;
Lozano, Angel ;
Soong, Anthony C. K. ;
Zhang, Jianzhong Charlie .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) :1065-1082
[3]  
[Anonymous], SPECTRUM SHARING INT
[4]   BackFi: High Throughput WiFi Backscatter [J].
Bharadia, Dinesh ;
Joshi, Kiran ;
Kotaru, Manikanta ;
Katti, Sachin .
ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2015, 45 (04) :283-296
[5]   Modeling and Performance Analysis of Wireless Networks With Ambient Backscatter Devices [J].
Darsena, Donatella ;
Gelli, Giacinto ;
Verde, Francesco .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2017, 65 (04) :1797-1814
[6]   A Survey on Non-Orthogonal Multiple Access for 5G Networks: Research Challenges and Future Trends [J].
Ding, Zhiguo ;
Lei, Xianfu ;
Karagiannidis, George K. ;
Schober, Robert ;
Yuan, Jinhong ;
Bhargava, Vijay K. .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2017, 35 (10) :2181-2195
[7]   A General MIMO Framework for NOMA Downlink and Uplink Transmission Based on Signal Alignment [J].
Ding, Zhiguo ;
Schober, Robert ;
Poor, H. Vincent .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2016, 15 (06) :4438-4454
[8]   The Application of MIMO to Non-Orthogonal Multiple Access [J].
Ding, Zhiguo ;
Adachi, Fumiyuki ;
Poor, H. Vincent .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2016, 15 (01) :537-552
[9]   Cooperative Non-Orthogonal Multiple Access in 5G Systems [J].
Ding, Zhiguo ;
Peng, Mugen ;
Poor, H. Vincent .
IEEE COMMUNICATIONS LETTERS, 2015, 19 (08) :1462-1465
[10]   On the Performance of Non-Orthogonal Multiple Access in 5G Systems with Randomly Deployed Users [J].
Ding, Zhiguo ;
Yang, Zheng ;
Fan, Pingzhi ;
Poor, H. Vincent .
IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (12) :1501-1505