Pancreatic adipose tissue infiltration, parenchymal steatosis and beta cell function in humans

被引:101
作者
Begovatz, Paul [1 ,2 ]
Koliaki, Chrysi [1 ,2 ]
Weber, Katharina [1 ,2 ]
Strassburger, Klaus [3 ]
Nowotny, Bettina [1 ,2 ,4 ]
Nowotny, Peter [1 ,2 ]
Muessig, Karsten [1 ,2 ,4 ]
Bunke, Juergen [5 ]
Pacini, Giovanni [6 ]
Szendroedi, Julia [1 ,2 ,4 ]
Roden, Michael [1 ,2 ,4 ]
机构
[1] Univ Dusseldorf, Leibniz Ctr Diabet Res, German Diabet Ctr, Inst Clin Diabetol, D-40225 Dusseldorf, Germany
[2] German Ctr Diabet Res, Dusseldorf, Germany
[3] Inst Epidemiol & Biometry, German Diabet Ctr, Dusseldorf, Germany
[4] Univ Dusseldorf, Fac Med, Dept Endocrinol & Diabetol, D-40225 Dusseldorf, Germany
[5] Philips Healthcare, Hamburg, Germany
[6] CNR, Inst Biomed Engn ISIB, Metab Unit, Padua, Italy
关键词
Beta cell; Insulin; Insulin sensitivity; Lipids; Magnetic resonance imaging; Pancreas; NUCLEAR-MAGNETIC-RESONANCE; INSULIN SENSITIVITY; FAT-CONTENT; IN-VIVO; GLUCOSE-TOLERANCE; OXIDATIVE STRESS; ECHO TIMES; SPECTROSCOPY; LIVER; MRI;
D O I
10.1007/s00125-015-3544-5
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims/hypothesis This study aimed to perform a comprehensive analysis of interlobular, intralobular and parenchymal pancreatic fat in order to assess their respective effects on beta cell function. Methods Fifty-six participants (normal glucose tolerance [NGT] (n = 28), impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT) (n = 14) and patients with type 2 diabetes (n = 14)) underwent a frequent-sampling OGTT and non-invasive magnetic resonance imaging (MRI; whole-body and pancreatic) and proton magnetic resonance spectroscopy (H-1-MRS; liver and pancreatic fat). Total pancreatic fat was assessed by a standard 2 cm(3) H-1-MRS method, intralobular fat by 1 cm(3) H-1-MRS that avoided interlobular fat within modified DIXON (mDIXON) water images, and parenchymal fat by a validated mDIXON-MRI fat-fraction method. Results Comparison of H-1-MRS techniques revealed an inhomogeneous distribution of interlobular and intralobular adipose tissue, which increased with decreasing glucose tolerance. mDIXON-MRI measurements provided evidence against uniform steatosis, revealing regions of parenchymal tissue void of lipid accumulation in all participants. Total (r = 0.385, p < 0.01) and intralobular pancreas adipose tissue infiltration (r = 0.310, p < 0.05) positively associated with age, but not with fasting or 2 h glucose levels, BMI or visceral fat content (all p > 0.5). Furthermore, no associations were found between total and intralobular pancreatic adipose tissue infiltration and insulin secretion or beta cell function within NGT, IFG/IGT or patients with type 2 diabetes (all p > 0.2). Conclusions/interpretation The pancreas does not appear to be another target organ for abnormal endocrine function because of ectopic parenchymal fat storage. No relationship was found between pancreatic adipose tissue infiltration and beta cell function, regardless of glucose tolerance status.
引用
收藏
页码:1646 / 1655
页数:10
相关论文
共 51 条
[1]   Importance of quantifying insulin secretion in relation to insulin sensitivity to accurately assess beta cell function in clinical studies [J].
Ahrén, B ;
Pacini, G .
EUROPEAN JOURNAL OF ENDOCRINOLOGY, 2004, 150 (02) :97-104
[2]  
[Anonymous], DIABETES CARE
[3]  
Begovatz P, 2014, P INT SOC MAGN RESON, V23, P3608
[4]   β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes [J].
Butler, AE ;
Janson, J ;
Bonner-Weir, S ;
Ritzel, R ;
Rizza, RA ;
Butler, PC .
DIABETES, 2003, 52 (01) :102-110
[5]   Dual-Echo Dixon Imaging with Flexible Choice of Echo Times [J].
Eggers, Holger ;
Brendel, Bernhard ;
Duijndam, Adri ;
Herigault, Gwenael .
MAGNETIC RESONANCE IN MEDICINE, 2011, 65 (01) :96-107
[6]   High glucose causes apoptosis in cultured human pancreatic Islets of Langerhans - A potential role for regulation of specific Bcl family genes toward an apoptotic cell death program [J].
Federici, M ;
Hribal, M ;
Perego, L ;
Ranalli, M ;
Caradonna, Z ;
Perego, C ;
Usellini, L ;
Nano, R ;
Bonini, P ;
Bertuzzi, F ;
Marlier, LNJL ;
Davalli, AM ;
Carandente, O ;
Pontiroli, AE ;
Melino, G ;
Marchetti, P ;
Lauro, R ;
Sesti, G ;
Folli, F .
DIABETES, 2001, 50 (06) :1290-1301
[7]   In vivo characterization of the liver fat 1H MR spectrum [J].
Hamilton, Gavin ;
Yokoo, Takeshi ;
Bydder, Mark ;
Cruite, Irene ;
Schroeder, Michael E. ;
Sirlin, Claude B. ;
Middleton, Michael S. .
NMR IN BIOMEDICINE, 2011, 24 (07) :784-790
[8]   Pancreatic fat is negatively associated with insulin secretion in individuals with impaired fasting glucose and/or impaired glucose tolerance: a nuclear magnetic resonance study [J].
Heni, Martin ;
Machann, Juergen ;
Staiger, Harald ;
Schwenzer, Nina F. ;
Peter, Andreas ;
Schick, Fritz ;
Claussen, Claus D. ;
Stefan, Norbert ;
Haering, Hans-Ulrich ;
Fritsche, Andreas .
DIABETES-METABOLISM RESEARCH AND REVIEWS, 2010, 26 (03) :200-205
[9]   Comparison of Fat-Water MRI and Single-voxel MRS in the Assessment of Hepatic and Pancreatic Fat Fractions in Humans [J].
Hu, Houchun H. ;
Kim, Hee-Won ;
Nayak, Krishna S. ;
Goran, Michael I. .
OBESITY, 2010, 18 (04) :841-847
[10]   Mechanisms linking obesity to insulin resistance and type 2 diabetes [J].
Kahn, Steven E. ;
Hull, Rebecca L. ;
Utzschneider, Kristina M. .
NATURE, 2006, 444 (7121) :840-846