The minimal model program for the Hilbert scheme of points on P2 and Bridgeland stability

被引:92
作者
Arcara, Daniele [1 ]
Bertram, Aaron [2 ]
Coskun, Izzet [3 ]
Huizenga, Jack [3 ]
机构
[1] St Vincent Coll, Dept Math, Latrobe, PA 15650 USA
[2] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[3] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
Hilbert scheme; Minimal model program; Bridgeland stability conditions; Quiver representations; ALGEBRAIC-FAMILIES; SEMISTABLE OBJECTS; MODULI SPACE;
D O I
10.1016/j.aim.2012.11.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the birational geometry of the Hilbert scheme P-2[n] of n-points on P-2. We discuss the stable base locus decomposition of the effective cone and the corresponding birational models. We give modular interpretations to the models in terms of moduli spaces of Bridgeland semi-stable objects. We construct these moduli spaces as moduli spaces of quiver representations using G.I.T. and thus show that they are projective. There is a precise correspondence between wall-crossings in the Bridgeland stability manifold and wall-crossings between Mori cones. For n <= 9, we explicitly determine the walls in both interpretations and describe the corresponding flips and divisorial contractions. (C). 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:580 / 626
页数:47
相关论文
共 34 条
[1]  
Abramovich D, 2006, J REINE ANGEW MATH, V590, P89
[2]   Bridgeland-stable moduli spaces for K-trivial surfaces [J].
Arcara, Daniele ;
Bertram, Aaron ;
Lieblich, Max .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (01) :1-38
[3]   MONADS AND MODULI OF VECTOR BUNDLES [J].
BARTH, W ;
HULEK, K .
MANUSCRIPTA MATHEMATICA, 1978, 25 (04) :323-347
[4]  
Bayer A., ARXIV12034613
[5]   THE SPACE OF STABILITY CONDITIONS ON THE LOCAL PROJECTIVE PLANE [J].
Bayer, Arend ;
Macri, Emanuele .
DUKE MATHEMATICAL JOURNAL, 2011, 160 (02) :263-322
[6]  
Beltrametti M., 1991, Sympos. Math., P33
[7]   EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE [J].
Birkar, Caucher ;
Cascini, Paolo ;
Hacon, Christopher D. ;
McKernan, James .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (02) :405-468
[8]   Stability conditions on triangulated categories [J].
Bridgeland, Tom .
ANNALS OF MATHEMATICS, 2007, 166 (02) :317-345
[9]   Stability conditions on K3 surfaces [J].
Bridgeland, Tom .
DUKE MATHEMATICAL JOURNAL, 2008, 141 (02) :241-291
[10]   D-VERY-AMPLE LINE BUNDLES AND EMBEDDINGS OF HILBERT SCHEMES OF 0-CYCLES [J].
CATANESE, F ;
GOETTSCHE, L .
MANUSCRIPTA MATHEMATICA, 1990, 68 (03) :337-341