Intraband conductivity response in graphene observed using ultrafast infrared-pump visible-probe spectroscopy

被引:37
作者
Dani, K. M. [1 ,2 ]
Lee, J. [1 ]
Sharma, R. [3 ,4 ]
Mohite, A. D. [1 ]
Galande, C. M. [5 ]
Ajayan, P. M. [5 ]
Dattelbaum, A. M. [1 ]
Htoon, H. [1 ]
Taylor, A. J. [1 ]
Prasankumar, R. P. [1 ]
机构
[1] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
[2] Grad Univ, Okinawa Inst Sci & Technol, Femtosecond Spect Unit, Okinawa 9040495, Japan
[3] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[4] TRIUMF, Vancouver, BC V6T 2A3, Canada
[5] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA
关键词
DYNAMICS;
D O I
10.1103/PhysRevB.86.125403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Graphene, a truly two-dimensional material with a unique linear energy-momentum dispersion, demonstrates novel photonic properties such as universal absorption and conductivity, with applications including terahertz lasing, broadband midinfrared detectors, and tunable ultrafast lasers. Understanding the ultrafast nonequilibrium dynamics of photocarriers in graphene's unique relativistic band structure is important for the development of such high-speed, graphene-based photonic devices, as well as from a fundamental point of view. Here, our experiments indicate the relativistic nature of a nonequilibrium gas of electrons and holes photogenerated in a graphene monolayer as early as 100 fs after photoexcitation. We observe a nonlinear scaling in the Drude-like optical conductivity of the photocarriers with respect to their density, in striking contrast to the linear scaling expected from conventional materials with parabolic dispersion relations. Our measurements also indicate that hot photocarriers cool on a sub-100-fs time scale via interactions with optical phonons. These results elucidate the unique nature of the ultrafast dynamics of photocarriers in a relativistic material, in contrast to conventional materials, and provide a way to manipulate graphene's optical conductivity for applications in photonics and plasmonics.
引用
收藏
页数:7
相关论文
共 36 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   Observation of the fractional quantum Hall effect in graphene [J].
Bolotin, Kirill I. ;
Ghahari, Fereshte ;
Shulman, Michael D. ;
Stormer, Horst L. ;
Kim, Philip .
NATURE, 2009, 462 (7270) :196-199
[3]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[4]   Femtosecond carrier dynamics in bulk graphite and graphene paper [J].
Carbone, F. ;
Aubock, G. ;
Cannizzo, A. ;
Van Mourik, F. ;
Nair, R. R. ;
Geim, A. K. ;
Novoselov, K. S. ;
Chergui, M. .
CHEMICAL PHYSICS LETTERS, 2011, 504 (1-3) :37-40
[5]   Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene [J].
Choi, H. ;
Borondics, F. ;
Siegel, D. A. ;
Zhou, S. Y. ;
Martin, M. C. ;
Lanzara, A. ;
Kaindl, R. A. .
APPLIED PHYSICS LETTERS, 2009, 94 (17)
[6]   Measurement of ultrafast carrier dynamics in epitaxial graphene [J].
Dawlaty, Jahan M. ;
Shivaraman, Shriram ;
Chandrashekhar, Mvs ;
Rana, Farhan ;
Spencer, Michael G. .
APPLIED PHYSICS LETTERS, 2008, 92 (04)
[7]  
Dressel M., 2002, Electrodynamics of solids: optical properties of electrons in matter
[8]   Space-time dispersion of graphene conductivity [J].
Falkovsky, L. A. ;
Varlamov, A. A. .
EUROPEAN PHYSICAL JOURNAL B, 2007, 56 (04) :281-284
[9]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[10]   Ultrafast Optical-Pump Terahertz-Probe Spectroscopy of the Carrier Relaxation and Recombination Dynamics in Epitaxial Graphene [J].
George, Paul A. ;
Strait, Jared ;
Dawlaty, Jahan ;
Shivaraman, Shriram ;
Chandrashekhar, Mvs ;
Rana, Farhan ;
Spencer, Michael G. .
NANO LETTERS, 2008, 8 (12) :4248-4251