Numerical analysis of a photonic crystal fiber based on a surface plasmon resonance sensor with an annular analyte channel

被引:89
作者
Liu, Chao [1 ]
Yang, Lin [1 ]
Su, Weiquan [1 ]
Wang, Famei [1 ]
Sun, Tao [2 ]
Liu, Qiang [1 ]
Mu, Haiwei [1 ]
Chu, Paul K. [3 ]
机构
[1] Northeast Petr Univ, Sch Elect Sci, Daqing 163318, Peoples R China
[2] ASTAR, Inst Microelect, Singapore 117685, Singapore
[3] City Univ Hong Kong, Dept Phys & Mat Sci, Tat Chee Ave, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Photonic crystal fiber; Surface plasmon resonance; Sensor; Finite element method; MICROSTRUCTURED OPTICAL-FIBER; NANOSTRUCTURES; INTERFEROMETER; CORE;
D O I
10.1016/j.optcom.2016.07.031
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A sensing structure is designed with a photonic crystal fiber based on a surface plasmon resonance (PCF-SPR) sensor using gold as the sensitive material. The benefit of the structure is to reduce the difficulty in gold deposition, because the Au film is deposited on the outside of the fiber core instead of on the holes filled with analyte inside the core. The properties of the sensor are numerically calculated by the finite element method. The results show that the thickness of the gold film, refractive index of the analyte, and radius of the central hole affect the sensing performance of the PCF-SPR. By optimizing the model, an extra graphene layer with the thickness of 20 nm is deposited on the gold film in the model. The maximum spectral sensitivity can be as high as 7500 nm/RIU for the sensor with the gold-graphene composite film as the sensitive material. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:162 / 166
页数:5
相关论文
共 33 条
[1]   Some theory of a dual-polarization interferometer for sensor applications [J].
Abram, R. A. ;
Brand, S. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (12)
[2]   Numerical Analysis of a Photonic Crystal Fiber for Biosensing Applications [J].
Akowuah, Emmanuel K. ;
Gorman, Terry ;
Ademgil, Huseyin ;
Haxha, Shyqyri ;
Robinson, Gary K. ;
Oliver, Jenny V. .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2012, 48 (11) :1403-1410
[3]  
Bing P.B., OPT APPL, P493
[4]   Design of broadband power splitters using two-mode interference in slot waveguides [J].
Chen, Bing ;
Liu, Chunliang ;
Si, Jinhai .
OPTICS COMMUNICATIONS, 2015, 355 :367-375
[5]   Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator [J].
Claes, Tom ;
Girones Molera, Jordi ;
De Vos, Katrien ;
Schacht, Etienne ;
Baets, Roel ;
Bienstman, Peter .
IEEE PHOTONICS JOURNAL, 2009, 1 (03) :197-204
[6]  
Cui Y., 2011, US Patent, Patent No. [WO2011/1339323A2, 201113393323]
[7]   Graphene-Based Birefringent Photonic Crystal Fiber Sensor Using Surface Plasmon Resonance [J].
Dash, Jitendra Narayan ;
Jha, Rajan .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2014, 26 (11) :1092-1095
[8]   Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End [J].
Gabriel Ortega-Mendoza, J. ;
Padilla-Vivanco, Alfonso ;
Toxqui-Quitl, Carina ;
Zaca-Moran, Placido ;
Villegas-Hernandez, David ;
Chavez, Fernando .
SENSORS, 2014, 14 (10) :18701-18710
[9]   Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths [J].
Gao, Di ;
Guan, Chunying ;
Wen, Yaowu ;
Zhong, Xing ;
Yuan, Libo .
OPTICS COMMUNICATIONS, 2014, 313 :94-98
[10]   Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics [J].
Hassani, A. ;
Skorobogatiy, M. .
OPTICS EXPRESS, 2006, 14 (24) :11616-11621