Turing Instability in Reaction-Diffusion Systems with Nonlinear Diffusion

被引:3
作者
Zemskov, E. P. [1 ]
机构
[1] Russian Acad Sci, Dorodnicyn Comp Ctr, Moscow 119333, Russia
关键词
CROSS-DIFFUSION; CONVECTION; WAVES;
D O I
10.1134/S1063776113120194
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Turing instability is studied in two-component reaction-diffusion systems with nonlinear diffusion terms, and the regions in parametric space where Turing patterns can form are determined. The boundaries between super- and subcritical bifurcations are found. Calculations are performed for one-dimensional brusselator and oregonator models.
引用
收藏
页码:764 / 769
页数:6
相关论文
共 25 条
[1]  
[Anonymous], 2007, STRUCTURES CHAOS NON
[2]  
[Борина Мария Юрьевна Borina M.U.], 2011, [Компьютерные исследования и моделирование, Computer Research and Modeling, Komp'yuternye issledovaniya i modelirovanie], V3, P135
[3]  
Cross M., 2009, Pattern Formation and Dynamics in Nonequilibrium Systems
[4]  
De Wit A, 1993, THESIS U LIBRE BRUXE
[5]  
Grekhova MT, 1981, AUTOWAVE PROCESSES S
[6]  
IVANITSKY GR, 1987, BIOFIZIKA+, V32, P354
[7]   Effects of cross diffusion on Turing bifurcations in two-species reaction-transport systems [J].
Kumar, Niraj ;
Horsthemke, Werner .
PHYSICAL REVIEW E, 2011, 83 (03)
[8]   Turing bifurcation in a reaction-diffusion system with density-dependent dispersal [J].
Kumar, Niraj ;
Horsthemke, Werner .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (09) :1812-1818
[9]   MODELING OF TURING STRUCTURES IN THE CHLORITE IODIDE MALONIC-ACID STARCH REACTION SYSTEM [J].
LENGYEL, I ;
EPSTEIN, IR .
SCIENCE, 1991, 251 (4994) :650-652
[10]  
Mendez V, 2010, SPRINGER SER SYNERG, P1, DOI 10.1007/978-3-642-11443-4