Turing Instability in Reaction-Diffusion Systems with Nonlinear Diffusion

被引:3
作者
Zemskov, E. P. [1 ]
机构
[1] Russian Acad Sci, Dorodnicyn Comp Ctr, Moscow 119333, Russia
关键词
CROSS-DIFFUSION; CONVECTION; WAVES;
D O I
10.1134/S1063776113120194
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Turing instability is studied in two-component reaction-diffusion systems with nonlinear diffusion terms, and the regions in parametric space where Turing patterns can form are determined. The boundaries between super- and subcritical bifurcations are found. Calculations are performed for one-dimensional brusselator and oregonator models.
引用
收藏
页码:764 / 769
页数:6
相关论文
共 25 条
  • [1] [Anonymous], 2007, STRUCTURES CHAOS NON
  • [2] [Борина Мария Юрьевна Borina M.U.], 2011, [Компьютерные исследования и моделирование, Computer Research and Modeling, Komp'yuternye issledovaniya i modelirovanie], V3, P135
  • [3] Cross M., 2009, Pattern Formation and Dynamics in Nonequilibrium Systems
  • [4] De Wit A, 1993, THESIS U LIBRE BRUXE
  • [5] Grekhova MT, 1981, AUTOWAVE PROCESSES S
  • [6] IVANITSKY GR, 1987, BIOFIZIKA+, V32, P354
  • [7] Effects of cross diffusion on Turing bifurcations in two-species reaction-transport systems
    Kumar, Niraj
    Horsthemke, Werner
    [J]. PHYSICAL REVIEW E, 2011, 83 (03):
  • [8] Turing bifurcation in a reaction-diffusion system with density-dependent dispersal
    Kumar, Niraj
    Horsthemke, Werner
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (09) : 1812 - 1818
  • [9] MODELING OF TURING STRUCTURES IN THE CHLORITE IODIDE MALONIC-ACID STARCH REACTION SYSTEM
    LENGYEL, I
    EPSTEIN, IR
    [J]. SCIENCE, 1991, 251 (4994) : 650 - 652
  • [10] Mendez V, 2010, SPRINGER SER SYNERG, P1, DOI 10.1007/978-3-642-11443-4