Stability of the solution set of non-coercive variational inequalities

被引:35
作者
Adly, S
Théra, M
机构
[1] Univ Limoges, LACO, F-87060 Limoges, France
[2] Fac Sci & Tech St Jerome, LMMT, F-13397 Marseille 20, France
关键词
convex analysis; barrier cone; support functional; recession analysis; semi-coercive functional;
D O I
10.1142/S0219199702000579
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the stability of the solution set of a non-coercive variational inequality with respect to small perturbations of the data involved in the problem. This research is done using well-known tools of convex analysis and the concept of wellpositioned convex sets (which is defined and studied).
引用
收藏
页码:145 / 160
页数:16
相关论文
共 15 条
[1]   Recession mappings and noncoercive variational inequalities [J].
Adly, S ;
Goeleven, D ;
Thera, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (09) :1573-1603
[2]  
Adly S, 2001, J CONVEX ANAL, V8, P127
[3]  
[Anonymous], COMMUN PURE APPL MAT
[4]  
[Anonymous], CONVEX ANAL
[5]  
ARNOLD DN, 1987, ARCH RATION MECH AN, V98, P143, DOI 10.1007/BF00251231
[6]  
AUBIN JP, 1986, NORTH HOLLAND MATH L, V34, P135
[7]   CONTINUITY AND DIFFERENTIABILITY PROPERTIES OF CONVEX OPERATORS [J].
BORWEIN, JM .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1982, 44 (MAY) :420-444
[8]   NON-LINEAR EQUATIONS AND INEQUATIONS IN DUAL VECTORIAL SPACES [J].
BREZIS, H .
ANNALES DE L INSTITUT FOURIER, 1968, 18 (01) :115-&
[9]   Pseudomonotone variational inequality problems: Existence of solutions [J].
Crouzeix, JP .
MATHEMATICAL PROGRAMMING, 1997, 78 (03) :305-314
[10]  
GOELEVEN D, 1996, PITMAN RES NOTES MAT, V357