High Performance Fe- and N- Doped Carbon Catalyst with Graphene Structure for Oxygen Reduction

被引:576
作者
Peng, Hongliang [1 ,2 ,3 ,4 ]
Mo, Zaiyong [1 ,2 ,3 ]
Liao, Shijun [1 ,2 ,3 ]
Liang, Huagen [1 ,2 ,3 ]
Yang, Lijun [1 ,2 ,3 ]
Luo, Fan [1 ,2 ,3 ]
Song, Huiyu [1 ,2 ,3 ]
Zhong, Yiliang [1 ,2 ,3 ]
Zhang, Bingqing [1 ,2 ,3 ]
机构
[1] S China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510641, Guangdong, Peoples R China
[2] Guangdong Univ, Key Lab Fuel Cell Technol Guangdong Prov, Guangzhou, Peoples R China
[3] Guangdong Univ, Key Lab New Energy Technol, Guangzhou, Peoples R China
[4] Hunan Univ Sci & Technol, Sch Chem & Chem Engn, Xiangtan 411201, Peoples R China
基金
国家教育部博士点专项基金资助;
关键词
HIGH ELECTROCATALYTIC ACTIVITY; METAL-CATALYSTS; IRON; POLYANILINE; CATHODE; NANOSHEETS; STABILITY; ARRAYS;
D O I
10.1038/srep01765
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Proton exchange membrane fuel cells are promising candidates for a clean and efficient energy conversion in the future, the development of carbon based inexpensive non-precious metal ORR catalyst has becoming one of the most attractive topics in fuel cell field. Herein we report a Fe-and N-doped carbon catalyst Fe-PANI/C-Mela with graphene structure and the surface area up to 702 m(2) g(-1). In 0.1 MHClO4 electrolyte, the ORR onset potential for the catalyst is high up to 0.98 V, and the half-wave potential is only 60 mV less than that of the Pt/C catalyst (Loadings: 51 mu g Pt cm(-2)). The catalyst shows high stability after 10,000 cyclic voltammetry cycles. A membrane electrode assembly made with the catalyst as a cathode is tested in a H-2-air single cell, the maximum power density reached similar to 0.33 W cm(2) at 0.47 V.
引用
收藏
页数:7
相关论文
共 41 条
[1]   Facile synthesis, spectroscopy and electrochemical activity of two substituted iron phthalocyanines as oxygen reduction catalysts in an acidic environment [J].
Baker, Ryan ;
Wilkinson, David P. ;
Zhang, Jiujun .
ELECTROCHIMICA ACTA, 2009, 54 (11) :3098-3102
[2]   A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction [J].
Bezerra, Cicero W. B. ;
Zhang, Lei ;
Liu, Hansan ;
Lee, Kunchan ;
Marques, Aldalea L. B. ;
Marques, Edmar P. ;
Wang, Haijiang ;
Zhang, Jiujun .
JOURNAL OF POWER SOURCES, 2007, 173 (02) :891-908
[3]   Pyridine-TiO2 surface interaction as a probe for surface active centers analysis [J].
Bezrodna, T ;
Puchkovska, G ;
Shimanovska, V ;
Chashechnikova, I ;
Khalyavka, T ;
Baran, J .
APPLIED SURFACE SCIENCE, 2003, 214 (1-4) :222-231
[4]   Nitrogen-Containing Carbon Nanostructures as Oxygen-Reduction Catalysts [J].
Biddinger, Elizabeth J. ;
von Deak, Dieter ;
Ozkan, Umit S. .
TOPICS IN CATALYSIS, 2009, 52 (11) :1566-1574
[5]   A review on non-precious metal electrocatalysts for PEM fuel cells [J].
Chen, Zhongwei ;
Higgins, Drew ;
Yu, Aiping ;
Zhang, Lei ;
Zhang, Jiujun .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3167-3192
[6]   Highly Active Porous Carbon-Supported Nonprecious Metal-N Electrocatalyst for Oxygen Reduction Reaction in PEM Fuel Cells [J].
Choi, Ja-Yeon ;
Hsu, Ryan S. ;
Chen, Zhongwei .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (17) :8048-8053
[7]   XPS evidence for molecular charge-transfer doping of graphene [J].
Choudhury, Debraj ;
Das, Barun ;
Sarma, D. D. ;
Rao, C. N. R. .
CHEMICAL PHYSICS LETTERS, 2010, 497 (1-3) :66-69
[8]   Electrocatalyst approaches and challenges for automotive fuel cells [J].
Debe, Mark K. .
NATURE, 2012, 486 (7401) :43-51
[9]   Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs [J].
Gasteiger, HA ;
Kocha, SS ;
Sompalli, B ;
Wagner, FT .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2005, 56 (1-2) :9-35
[10]   Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction [J].
Gong, Kuanping ;
Du, Feng ;
Xia, Zhenhai ;
Durstock, Michael ;
Dai, Liming .
SCIENCE, 2009, 323 (5915) :760-764