Vanadium-Substituted LiCoPO4 Core with a Monolithic LiFePO4 Shell for High-Voltage Lithium-Ion Batteries

被引:54
作者
Kreder, Karl J., III
Manthiram, Arumugam [1 ]
机构
[1] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
关键词
ELECTRODE MATERIALS; CATHODE MATERIALS; ELECTRICAL-CONDUCTIVITY; HYDROTHERMAL SYNTHESIS; CAPACITY; TEMPERATURE; FRAMEWORKS; INSERTION;
D O I
10.1021/acsenergylett.6b00496
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-voltage lithium-ion cathodes are a promising solution for achieving higher energy density batteries. However, the use of high-voltage cathodes is presently limited by the irreversible chemical reactions occurring between the cathode and the electrolyte at the high operating voltages. Metal-oxide coatings on micrometer sized high-voltage cathode materials have been employed to improve the electrochemical performance, but it is often difficult to achieve a robust, durable, monolithic coating on nanoparticles. This study presents a low-temperature microwave-assisted solvothermal process for realizing a robust, monolithic coating of LiFePO4 on the high voltage (similar to 4.8 V) LiCo1-3x/2Vx square x/2PO4 (x = 0, 0.02, and 0.04) nanoparticles, offering a stable cathode electrolyte interface. The core shell cathode obtained exhibits enhanced electrochemical performance compared to the uncoated sample with an initial discharge capacity of 145 mAh/g. A lower operating voltage of LiFePO4 (similar to 3.4 V) raises the Fermi energy of the cathode surface above the energy of the highest occupied molecular orbital of the electrolyte, offering a chemically stable cathode-electrolyte interface analogous to the stable solid electrolyte interphase layer formed on carbon anodes.
引用
收藏
页码:64 / 69
页数:6
相关论文
共 33 条
[1]   Cr and Si Substituted-LiCo0.9Fe0.1PO4: Structure, full and half Li-ion cell performance [J].
Allen, Jan L. ;
Allen, Joshua L. ;
Thompson, Travis ;
Delp, Samuel A. ;
Wolfenstine, Jeff ;
Jow, T. Richard .
JOURNAL OF POWER SOURCES, 2016, 327 :229-234
[2]   THE ELECTRICAL-PROPERTIES OF CERAMIC ELECTROLYTES FOR LIMXTI2-X(PO4)3+YLI2O, M = GE, SN, HF, AND ZR SYSTEMS [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (07) :1827-1833
[3]   IONIC-CONDUCTIVITY OF SOLID ELECTROLYTES BASED ON LITHIUM TITANIUM PHOSPHATE [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (04) :1023-1027
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]  
Armand M, 2009, NAT MATER, V8, P621, DOI [10.1038/NMAT2448, 10.1038/nmat2448]
[6]   New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries [J].
Aurbach, D ;
Markovsky, B ;
Levi, MD ;
Levi, E ;
Schechter, A ;
Moshkovich, M ;
Cohen, Y .
JOURNAL OF POWER SOURCES, 1999, 81 :95-111
[7]   Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries [J].
Aurbach, Doron ;
Markovsky, Boris ;
Salitra, Gregory ;
Markevich, Elena ;
Talyossef, Yossi ;
Koltypin, Maxim ;
Nazar, Linda ;
Ellis, Brian ;
Kovacheva, Daniella .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :491-499
[8]   Thermal stability of LiCoPO4 cathodes [J].
Bramnik, Natalia N. ;
Nikolowski, Kristian ;
Trots, Dmytro M. ;
Ehrenberg, Helmut .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (06) :A89-A93
[9]   Hydrothermal synthesis of cathode materials [J].
Chen, Jiajun ;
Wang, Shijun ;
Whittingham, M. Stanley .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :442-448
[10]   Microscale measurements of the electrical conductivity of doped LiFePO4 [J].
Chung, SY ;
Chiang, YM .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (12) :A278-A281