Global Dirac bispinor entanglement under Lorentz boosts

被引:22
作者
Bittencourt, Victor A. S. V. [1 ]
Bernardini, Alex E. [1 ]
Blasone, Massimo [2 ,3 ]
机构
[1] Univ Fed Sao Carlos, Dept Fis, POB 676, BR-13565905 Sao Carlos, SP, Brazil
[2] Univ Salerno, Dept Fis, Via Giovanni Paolo II,132, I-84084 Fisciano, Italy
[3] Ist Nazl Fis Nucl, Sez Napoli, Grp Coll Salerno, I-80126 Naples, Italy
基金
巴西圣保罗研究基金会;
关键词
CLOCK-SYNCHRONIZATION; BELLS-INEQUALITY; PARTICLES;
D O I
10.1103/PhysRevA.97.032106
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The effects of Lorentz boosts on the quantum entanglement encoded by a pair of massive spin-1/2 particles are described according to the Lorentz covariant structure described by Dirac bispinors. The quantum system considered incorporates four degrees of freedom: two of them related to the bispinor intrinsic parity and the other two related to the bispinor spin projection, i.e., the Dirac particle helicity. Because of the natural multipartite structure involved, the Meyer-Wallach global measure of entanglement is preliminarily used for computing global quantum correlations, while the entanglement separately encoded by spin degrees of freedom is measured through the negativity of the reduced two-particle spin-spin state. A general framework to compute the changes on quantum entanglement induced by a boost is developed and then specialized to describe three particular antisymmetric two-particle states. According to the results obtained, two-particle spin-spin entanglement cannot be created by the action of a Lorentz boost in a spin-spin separable antisymmetric state. On the other hand, the maximal spin-spin entanglement encoded by antisymmetric superpositions is degraded by Lorentz boosts driven by high-speed frame transformations. Finally, the effects of boosts on chiral states are shown to exhibit interesting invariance properties, which can only be obtained through such a Lorentz covariant formulation of the problem.
引用
收藏
页数:11
相关论文
共 47 条
[1]   Relativistic entanglement and Bell's inequality [J].
Ahn, D ;
Lee, HJ ;
Moon, YH ;
Hwang, SW .
PHYSICAL REVIEW A, 2003, 67 (01) :8
[2]  
Alsing PM, 2002, QUANTUM INFORM COMPU, V2, P487
[3]   Relativistically invariant quantum information [J].
Bartlett, SD ;
Terno, DR .
PHYSICAL REVIEW A, 2005, 71 (01)
[4]   What is the relativistic spin operator? [J].
Bauke, Heiko ;
Ahrens, Sven ;
Keitel, Christoph H. ;
Grobe, Rainer .
NEW JOURNAL OF PHYSICS, 2014, 16
[5]   Chiral oscillations in terms of the zitterbewegung effect [J].
Bernardini, A. E. .
EUROPEAN PHYSICAL JOURNAL C, 2007, 50 (03) :673-678
[6]   Relativistic dynamics compels a thermalized fermi gas to a unique intrinsic parity eigenstate [J].
Bernardini, A. E. ;
Mizrahi, S. S. .
PHYSICA SCRIPTA, 2014, 89 (07)
[7]  
Bernardini A. E., 2005, J PHYS G, V32, P9
[8]   Lattice-layer entanglement in Bernal-stacked bilayer graphene [J].
Bittencourt, Victor A. S. V. ;
Bernardini, Alex E. .
PHYSICAL REVIEW B, 2017, 95 (19)
[9]   Quantum transitions and quantum entanglement from Dirac-like dynamics simulated by trapped ions [J].
Bittencourt, Victor A. S. V. ;
Bernardini, Alex E. ;
Blasone, Massimo .
PHYSICAL REVIEW A, 2016, 93 (05)
[10]   Entanglement of Dirac bi-spinor states driven by Poincare classes of SU(2) ⊗ SU(2) coupling potentials [J].
Bittencourt, Victor A. S. V. ;
Bernardini, Alex E. .
ANNALS OF PHYSICS, 2016, 364 :182-199