Tunable Metasurface Inverse Design for 80% Switching Efficiencies and 144° Angular Deflection

被引:77
作者
Chung, Haejun [1 ,2 ]
Miller, Owen D. [1 ,2 ]
机构
[1] Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA
[2] Yale Univ, Energy Sci Inst, New Haven, CT 06511 USA
关键词
tunable metasurface; inverse design; beam deflection; liquid crystal; PARTICLE SWARM OPTIMIZATION; BAND ACHROMATIC METALENS; SPATIAL LIGHT-MODULATOR; ABSORPTION; SCATTERING; COMPACT; BOUNDS; LIMITS; LENS;
D O I
10.1021/acsphotonics.0c00787
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Tunable metasurfaces have demonstrated the potential for dramatically enhanced functionality for applications including sensing, ranging and imaging. Liquid crystals (LCs) have fast switching speeds, low cost, and mature technological development, offering a versatile platform for electrical tunability. However, to date, electrically tunable metasurfaces are typically designed at a single operational state using physical intuition, without controlling alternate states and thus leading to limited switching efficiencies (<30%) and small angular deflection (<25 degrees). Here, we use large-scale computational "inverse design" to discover high-performance designs through adjoint-based local-optimization design iterations within a global-optimization search. We study and explain the physics of these devices, which heavily rely on sophisticated resonator design to fully utilize the very small permittivity change incurred by switching the liquid-crystal voltage. The optimal devices show tunable deflection angles ranging from 12 degrees to 144 degrees and switching efficiencies above 80%, exhibiting 6x angular improvements and 6x efficiency improvements compared to the current state-of-the-art.
引用
收藏
页码:2236 / 2243
页数:8
相关论文
共 74 条
[1]   Multiwavelength achromatic metasurfaces by dispersive phase compensation [J].
Aieta, Francesco ;
Kats, Mikhail A. ;
Genevet, Patrice ;
Capasso, Federico .
SCIENCE, 2015, 347 (6228) :1342-1345
[2]   Computational Bounds for Photonic Design [J].
Angeris, Guillermo ;
Vuckovic, Jelena ;
Boyd, Stephen P. .
ACS PHOTONICS, 2019, 6 (05) :1232-1239
[3]  
Arbabi A, 2017, NAT PHOTONICS, V11, P415, DOI [10.1038/nphoton.2017.96, 10.1038/NPHOTON.2017.96]
[4]   Composite functional metasurfaces for multispectral achromatic optics [J].
Avayu, Ori ;
Almeida, Euclides ;
Prior, Yehiam ;
Ellenbogen, Tal .
NATURE COMMUNICATIONS, 2017, 8
[5]   Inverse Designed Metalenses with Extended Depth of Focus [J].
Bayati, Elyas ;
Pestourie, Raphael ;
Colburn, Shane ;
Lin, Zin ;
Johnson, Steven G. ;
Majumdar, Arka .
ACS PHOTONICS, 2020, 7 (04) :873-878
[6]  
Bendse M.P., 2001, Encyclopedia of Optimization, P2636
[7]  
Bendsoe M. P., 2004, Topology optimization: theory, methods, and applications
[8]   Active Tuning of Spontaneous Emission by Mie-Resonant Dielectric Metasurfaces [J].
Bohn, Justus ;
Bucher, Tobias ;
Chong, Katie E. ;
Komar, Andrei ;
Choi, Duk-Yong ;
Neshev, Dragomir N. ;
Kivshar, Yuri S. ;
Pertsch, Thomas ;
Staude, Isabelle .
NANO LETTERS, 2018, 18 (06) :3461-3465
[9]   Electrically Controlled Nanostructured Metasurface Loaded with Liquid Crystal: Toward Multifunctional Photonic Switch [J].
Buchnev, Oleksandr ;
Podoliak, Nina ;
Kaczmarek, Malgosia ;
Zheludev, Nikolay I. ;
Fedotov, Vassili A. .
ADVANCED OPTICAL MATERIALS, 2015, 3 (05) :674-679
[10]   Inverse-Designed Broadband All-Dielectric Electromagnetic Metadevices [J].
Callewaert, F. ;
Velev, V. ;
Kumar, P. ;
Sahakian, A. V. ;
Aydin, K. .
SCIENTIFIC REPORTS, 2018, 8