On radial stationary solutions to a model of non-equilibrium growth

被引:23
|
作者
Escudero, Carlos [1 ,2 ]
Hakl, Robert [3 ]
Peral, Irene [1 ]
Torres, Pedro J. [4 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[2] Univ Autonoma Madrid, ICMAT, CSIC UAM UC3M UCM, E-28049 Madrid, Spain
[3] AS CR, Inst Math, Brno 61662, Czech Republic
[4] Univ Granada, Dept Matemat Aplicada, E-18071 Granada, Spain
关键词
non-equilibrium growth; radial solutions; variational methods; boundary value problems; ELLIPTIC PROBLEMS; CURVATURE FLOW; REGULARITY; INTERFACES; CONTINUUM; GRADIENT;
D O I
10.1017/S0956792512000484
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the formal geometric derivation of a non-equilibrium growth model that takes the form of a parabolic partial differential equation. Subsequently, we study its stationary radial solutions by means of variational techniques. Our results depend on the size of a parameter that plays the role of the strength of forcing. For small forcing we prove the existence and multiplicity of solutions to the elliptic problem. We discuss our results in the context of non-equilibrium statistical mechanics.
引用
收藏
页码:437 / 453
页数:17
相关论文
共 50 条
  • [21] Non-equilibrium coupling model for activated CVD diamond growth
    Wang, JT
    Huang, ZQ
    Yang, QH
    Zhang, DW
    Wan, YZ
    PROCEEDINGS OF THE THIRTEENTH INTERNATIONAL CONFERENCE ON CHEMICAL VAPOR DEPOSITION, 1996, 96 (05): : 727 - 732
  • [22] Non-equilibrium phase diagram of stationary states for low-pressure diamond growth
    王季陶
    郑培菊
    Chinese Science Bulletin, 1995, (13) : 1141 - 1143
  • [23] Theory of non-equilibrium stationary states as a theory of resonances
    Merkli, Marco
    Mueckt, Matthias
    Sigal, Israel Michael
    ANNALES HENRI POINCARE, 2007, 8 (08): : 1539 - 1593
  • [24] Macroscopic Fluctuation Theory for Stationary Non-Equilibrium States
    L. Bertini
    A. De Sole
    D. Gabrielli
    G. Jona-Lasinio
    C. Landim
    Journal of Statistical Physics, 2002, 107 : 635 - 675
  • [25] NON-EQUILIBRIUM ENTROPY ON STATIONARY MARKOV-PROCESSES
    MARTINEZ, AS
    ACTA APPLICANDAE MATHEMATICAE, 1985, 3 (03) : 221 - 238
  • [26] On the Stationary Non-Equilibrium Measures for the “Field–Crystal” System
    T. V. Dudnikova
    Doklady Mathematics, 2022, 106 : 332 - 335
  • [27] Non-equilibrium and stationary fluctuations for the SSEP with slow boundary
    Goncalves, P.
    Jara, M.
    Menezes, O.
    Neumann, A.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (07) : 4326 - 4357
  • [28] Minimum Dissipation Principle in Stationary Non-Equilibrium States
    L. Bertini
    A. De Sole
    D. Gabrielli
    G. Jona-Lasinio
    C. Landim
    Journal of Statistical Physics, 2004, 116 : 831 - 841
  • [29] Minimum dissipation principle in stationary non-equilibrium states
    Bertini, L
    De Sole, A
    Gabrielli, D
    Jona-Lasinio, G
    Landim, C
    JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) : 831 - 841
  • [30] Theory of Non-Equilibrium Stationary States as a Theory of Resonances
    Marco Merkli
    Matthias Mück
    Israel Michael Sigal
    Annales Henri Poincaré, 2007, 8 : 1539 - 1593