Large deviations for processes on half-line

被引:3
作者
Klebaner, F. C. [1 ]
Logachov, A. V. [2 ]
Mogulskii, A. A. [3 ]
机构
[1] Monash Univ, Clayton, Vic 3800, Australia
[2] Novosibirsk State Univ, Novosibirsk, Russia
[3] Sobolev Inst Math, Omsk, Russia
基金
澳大利亚研究理事会;
关键词
Large Deviations; Random Walk; Diffusion processes; RANDOM-WALKS; TRAJECTORIES;
D O I
10.1214/ECP.v20-4130
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a sequence of processes X-n(t) defined on the half-line 0 <= t < infinity, n = 1, 2, .... We give sufficient conditions for Large Deviation Principle (LDP) to hold in the space of continuous functions with metric rho(kappa)(f, g) = sup(t >= 0) vertical bar f(t) - g(t)vertical bar/1 + t(1+kappa), kappa >= 0. LDP is established for Random Walks and Diffusions defined on the half-line. LDP in this space is "more precise" than that with the usual metric of uniform convergence on compacts.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 19 条
[1]  
[Anonymous], STOKHASTICHESKIE DIF
[2]   MODERATELY LARGE DEVIATION PRINCIPLES FOR THE TRAJECTORIES OF RANDOM WALKS AND PROCESSES WITH INDEPENDENT INCREMENTS [J].
Borovkov, A. A. ;
Mogulskii, A. A. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2014, 58 (04) :562-581
[3]  
Borovkov A.A., 2010, SIB MAT ZH, V51, P1251
[4]  
Borovkov A. A., 2009, Probability Theory
[5]  
Borovkov A.A., 1992, LARGE DEVIATIONS TES
[6]  
Borovkov A.A., 2013, Asymptotic analysis of random walks. Rapidly decreasing distributions of increments
[7]   BOUNDARY-VALUE PROBLEMS FOR RANDOM WALKS AND LARGE DEVIATIONS IN FUNCTION SPACES [J].
BOROVKOV, AA .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1967, 12 (04) :575-&
[8]  
Budkov D.S., 2007, THEORY OF STOCHASTIC, V13, P22
[9]  
Delbaen F., 2002, ASIA PACIFIC FINANCI, V9, P85, DOI DOI 10.1023/A:1022269617674
[10]  
Dembo A., 2009, Large Deviations Techniques and Applications, V2nd