On Tight Bounds for the k-Forcing Number of a Graph

被引:0
作者
Zhao, Yan [1 ]
Chen, Lily [2 ]
Li, Hengzhe [3 ]
机构
[1] Taizhou Univ, Dept Math, Taizhou 225300, Peoples R China
[2] Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Peoples R China
[3] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
关键词
k-forcing; k-forcing number; Zero forcing set;
D O I
10.1007/s40840-017-0507-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The k-forcing number of a graph G, denoted by Fk(G), was introduced by Amos et al. It is a generalization of the zero forcing number of a graph G, denoted by Z(G). Amos et al. proved that for a connected graph G of order n with maximum degree 2, Z(G , and this inequality is sharp. Moreover, they posed a conjecture that Z(G)=F1(G)= if and only if G=Cn, G=K+1 or G=K,. In this paper, we prove that this conjecture is true. Moreover, we point out a mistake in their paper and get a stronger result which shows that Fn-1(G)=1 if and only if G is connected and Fk(G)=n-k if and only if G=Kn for kn-2.
引用
收藏
页码:743 / 749
页数:7
相关论文
共 11 条
[1]   Upper bounds on the k-forcing number of a graph [J].
Amos, David ;
Caro, Yair ;
Davila, Randy ;
Pepper, Ryan .
DISCRETE APPLIED MATHEMATICS, 2015, 181 :1-10
[2]  
[Anonymous], 2007, Graph Theory
[3]   Zero forcing sets and the minimum rank of graphs [J].
Barioli, Francesco ;
Barrett, Wayne ;
Butler, Steve ;
Cioaba, Sebastian M. ;
Cvetkovic, Dragos ;
Fallat, Shaun M. ;
Godsil, Chris ;
Haemers, Willem ;
Hogben, Leslie ;
Mikkelson, Rana ;
Narayan, Sivaram ;
Pryporova, Olga ;
Sciriha, Irene ;
So, Wasin ;
Stevanovic, Dragan ;
van der Holst, Hein ;
Vander Meulen, Kevin N. ;
Wehe, Amy Wangsness .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) :1628-1648
[4]  
Bondy JA, 2008, MURTY USR GRAPH THEO
[5]   Full control by locally induced relaxation [J].
Burgarth, Daniel ;
Giovannetti, Vittorio .
PHYSICAL REVIEW LETTERS, 2007, 99 (10)
[6]  
Caro Y., 2014, ARXIV14057573
[7]  
Chilakamarri K.B., 2012, B I COMBIN APPL, V64, P57
[8]   Vertex and edge spread of zero forcing number, maximum nullity, and minimum rank of a graph [J].
Edholm, Christina J. ;
Hogben, Leslie ;
My Huynh ;
LaGrange, Joshua ;
Row, Darren D. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (12) :4352-4372
[9]   Propagation time for zero forcing on a graph [J].
Hogben, Leslie ;
My Huynh ;
Kingsley, Nicole ;
Meyer, Sarah ;
Walker, Shanise ;
Young, Michael .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (13-14) :1994-2005
[10]   Zero forcing sets and bipartite circulants [J].
Meyer, Seth A. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (04) :888-900