Riesz points and Weyl's theorem

被引:36
作者
Barnes, BA [1 ]
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
Primary 47A10;
D O I
10.1007/BF01236471
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let sigma(W)T(T) denote the Weyl spectrum of a bounded linear operator T, and let sigma(T) be the usual spectrum of T. In this paper, a version of the classical Weyl's Theorem is studied. Specifically, the following question is considered: Under what conditions is it true that sigma(W)(T) = sigma(T)\{the set of Riesz points of T} ?
引用
收藏
页码:187 / 196
页数:10
相关论文
共 11 条
[1]  
BARNES BA, 1982, RIESZ FREDHOLM THEOR
[2]  
BAXLEY JV, 1971, REV ROUM MATH PURE A, V16, P1163
[3]  
BERBERIAN SK, 1969, MICH MATH J, V16, P273
[4]  
Bonsall F. F., 1973, Ergeb. Math. Grenzgeb., V80
[5]   Weyl's theorem holds for p-hyponormal operators [J].
Cho, M ;
Itoh, M ;
Oshiro, S .
GLASGOW MATHEMATICAL JOURNAL, 1997, 39 :217-220
[6]  
COBURN LA, 1966, MICH MATH J, V13, P285
[7]  
ISTRATESCU V, 1968, REV ROUMAINE MATH PU, V13, P1103
[8]  
Istratescu V, 1981, INTRO LINEAR OPERATO
[9]  
STAMPFLI JG, 1974, J LOND MATH SOC, V9, P165
[10]  
Taylor AE, 1980, INTRO FUNCTIONAL ANA