Classical and Quantum Convolutional Codes Derived From Algebraic Geometry Codes

被引:4
作者
Fernandes Pereira, Francisco Revson [1 ]
La Guardia, Giuliano Gadioli [2 ]
de Assis, Francisco Marcos [1 ]
机构
[1] Univ Fed Campina Grande, Dept Elect Engn, BR-58429900 Campina Grande, Brazil
[2] Univ Estadual Ponta Grossa, Dept Math & Stat, BR-84030900 Ponta Grossa, Brazil
关键词
Convolutional codes; quantum theory; algebraic geometry codes; maximum distance separable codes; FUNCTION-FIELDS; GOPPA CODES; IDENTITY; MEMORY; TOWERS;
D O I
10.1109/TCOMM.2018.2875754
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we construct new families of classical convolutional codes (CCC's) and new families of quantum convolutional codes (QCC's). The CCC's are derived from (block) algebraic geometry (AG) codes. Furthermore, new families of CCC's are constructed by applying the techniques of puncturing, extending, expanding, and by the direct product code construction applied to AG codes. In addition, utilizing the new CCC's constructed here, we obtain new families of QCC's. The parameters of these new codes are good. More precisely, in the classical case, a family of almost near maximum distance separable (MDS) codes is presented; in the quantum case, we construct a family of MDS (optimal) quantum convolutional codes.
引用
收藏
页码:73 / 82
页数:10
相关论文
共 40 条
[1]  
Aly S. A., 2007, QUANTUM CONVOLUTIONA
[2]   Quantum convolutional BCH codes [J].
Aly, Salah A. ;
Grassl, Markus ;
Klappenecker, Andreas ;
Roetteler, Martin ;
Sarvepalli, Pradeep Kiran .
2007 10TH CANADIAN WORKSHOP ON INFORMATION THEORY, 2007, :180-183
[3]  
Cary Huffman., 2003, Fundamentals of Error-Correcting Codes
[4]   CONVOLUTIONAL CODES .1. ALGEBRAIC STRUCTURE [J].
FORNEY, GD .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1970, 16 (06) :720-+
[5]   On the asymptotic behaviour of some towers of function fields over finite fields [J].
Garcia, A ;
Stichtenoth, H .
JOURNAL OF NUMBER THEORY, 1996, 61 (02) :248-273
[6]   On the weight distribution of convolutional codes [J].
Gluesing-Luerssen, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 408 :298-326
[7]   On the MacWilliains identity for convolutional codes [J].
Gluesing-Luerssen, Heide ;
Schneider, Gert .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (04) :1536-1550
[8]   A matrix ring description for cyclic convolutional codes [J].
Gluesing-Luerssen, Heide. ;
Tsang, Fai. -Lung. .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2008, 2 (01) :55-81
[9]   A MacWilliams Identity for Convolutional Codes: The General Case [J].
Gluesing-Luerssen, Heide ;
Schneider, Gert .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (07) :2920-2930
[10]  
Goppa V. D., 1981, SOV MATH DOKL, V24, P170