Analysis of multiple quasi-periodic orbits in recurrent neural networks

被引:2
|
作者
Marichal, R. L. [1 ]
Pineiro, J. D. [1 ]
机构
[1] Univ La Laguna, Dept Comp & Syst Sci, E-38206 Tenerife, Canary Islands, Spain
关键词
Recurrent neural networks; Bifurcation; Strong resonance; Quasi-periodic orbit; BIFURCATION-ANALYSIS; STABILITY; DELAYS; DYNAMICS; MODEL;
D O I
10.1016/j.neucom.2015.04.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we consider a recurrent neural network model consisting of two neurons and analyze its stability using the associated characteristic model. In order to analyze the multiple quasi-periodic orbits, the strong resonance of this system, in particular that known as the R-2 bifurcation, is also studied. In the case of two neurons, one necessary condition that yields the bifurcation is found. In addition, the direction of the R-2 bifurcation is determined by applying normal form theory and the center manifold theorem. The simple conditions for ensuring the existence of multiple quasi-periodic orbits are given. The strong resonance phenomenon is analyzed using numerical simulations and is related with the codimension-two bifurcation of the high-iteration map. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:85 / 95
页数:11
相关论文
共 50 条
  • [1] Stability of Quasi-Periodic Orbits in Recurrent Neural Networks
    R. L. Marichal
    J. D. Piñeiro
    E. J. González
    J. Torres
    Neural Processing Letters, 2010, 31 : 269 - 281
  • [2] Stability of Quasi-Periodic Orbits in Recurrent Neural Networks
    Marichal, R. L.
    Pineiro, J. D.
    Gonzalez, E. J.
    Torres, J.
    NEURAL PROCESSING LETTERS, 2010, 31 (03) : 269 - 281
  • [3] ASYMMETRIC QUASI-PERIODIC ORBITS
    MARKELLOS, VV
    ASTRONOMY & ASTROPHYSICS, 1978, 70 (03) : 319 - 325
  • [4] PERIODIC AND QUASI-PERIODIC EARTH SATELLITE ORBITS
    KAMMEYER, PC
    CELESTIAL MECHANICS, 1976, 14 (02): : 159 - 165
  • [5] Periodic and quasi-periodic orbits for the standard map
    Berretti, A
    Gentile, G
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 231 (01) : 135 - 156
  • [6] Periodic and Quasi-Periodic Orbits¶for the Standard Map
    Alberto Berretti
    Guido Gentile
    Communications in Mathematical Physics, 2002, 231 : 135 - 156
  • [7] PERIODIC AND QUASI-PERIODIC ORBITS FOR TWIST MAPS
    KATOK, A
    LECTURE NOTES IN PHYSICS, 1983, 179 : 47 - 65
  • [8] Recurrent dimensions of quasi-periodic orbits with irrational frequencies given by quasi liouville numbers
    Naito, K
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (06) : 3671 - 3682
  • [9] Fractal dimension of quasi-periodic orbits
    Shang, PJ
    Widder, K
    APPLIED MATHEMATICS LETTERS, 2001, 14 (08) : 969 - 973
  • [10] Analysis of Periodic and Quasi-Periodic Orbits in the Earth-Moon System
    Dutt, Pooja
    Sharma, R. K.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2010, 33 (03) : 1010 - 1017