Classification of category J modules for divergence zero vector fields on a torus

被引:10
作者
Billig, Yuly
Talboom, John
机构
基金
加拿大自然科学与工程研究理事会;
关键词
Indecomposable representations; Irreducible representations; Lie algebra of vector fields; Weight module; D-DIMENSIONAL TORUS; LIE-ALGEBRAS; IRREDUCIBLE REPRESENTATIONS; DIFFEOMORPHISMS;
D O I
10.1016/j.jalgebra.2017.05.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a category of modules that admit compatible actions of the commutative algebra of Laurent polynomials and the Lie algebra of divergence zero vector fields on a torus and have a weight decomposition with finite dimensional weight spaces. We classify indecomposable and irreducible modules in this category. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:498 / 516
页数:19
相关论文
共 9 条
[1]   Irreducible representations for toroidal Lie algebras [J].
Berman, S ;
Billig, Y .
JOURNAL OF ALGEBRA, 1999, 221 (01) :188-231
[2]   Weight modules over exp-polynomial Lie algebras [J].
Billig, Y ;
Zhao, KM .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 191 (1-2) :23-42
[3]   Jet modules [J].
Billig, Yuly .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2007, 59 (04) :712-729
[4]   JORDAN-CHEVALLEY DECOMPOSITION IN FINITE DIMENSIONAL LIE ALGEBRAS [J].
Cagliero, Leandro ;
Szechtman, Fernando .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (11) :3909-3913
[5]  
Fulton W., 1991, REPRESENTATION THEOR
[6]   Partial classification of cuspidal simple modules for Virasoro-like algebra [J].
Jiang, Jian-Jian ;
Lin, Wei-Qiang .
JOURNAL OF ALGEBRA, 2016, 464 :266-278
[7]   Partial classification of modules for Lie-algebra of diffeomorphisms of d-dimensional torus [J].
Rao, SE .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (08) :3322-3333
[8]   Irreducible representations of the Lie-algebra of the diffeomorphisms of a d-dimensional torus [J].
Rao, SE .
JOURNAL OF ALGEBRA, 1996, 182 (02) :401-421
[9]   Irreducible Modules for the Lie Algebra of Divergence Zero Vector Fields on a Torus [J].
Talboom, John .
COMMUNICATIONS IN ALGEBRA, 2016, 44 (04) :1795-1808