Magnetic levitational bioassembly of 3D tissue construct in space

被引:72
作者
Parfenov, Vladislav A. [1 ,2 ]
Khesuani, Yusef D. [1 ]
Petrov, Stanislav, V [1 ]
Karalkin, Pavel A. [1 ,3 ]
Koudan, Elizaveta, V [1 ]
Nezhurina, Elizaveta K. [3 ]
Pereira, Frederico D. A. S. [1 ]
Krokhmal, Alisa A. [1 ]
Gryadunova, Anna A. [1 ]
Bulanova, Elena A. [1 ]
Vakhrushev, Igor V. [1 ]
Babichenko, Igor I. [4 ]
Kasyanov, Vladimir [5 ,15 ]
Petrov, Oleg F. [6 ]
Vasiliev, Mikhail M. [6 ]
Brakke, Kenn [7 ]
Belousov, Sergei, I [8 ]
Grigoriev, Timofei E. [8 ]
Osidak, Egor O. [9 ]
Rossiyskaya, Ekaterina, I [10 ]
Buravkova, Ludmila B. [11 ]
Kononenko, Oleg D. [12 ]
Demirci, Utkan [13 ]
Mironov, Vladimir A. [1 ,14 ]
机构
[1] Lab Biotechnol Res 3D Bioprinting Solut, Moscow, Russia
[2] Russian Acad Sci, AA Baikov Inst Met & Mat Sci, Moscow, Russia
[3] Natl Med Res Radiol Ctr, PA Hertsen Moscow Oncol Res Ctr, Moscow, Russia
[4] RUDN Univ, Peoples Friendship Univ Russia, Moscow, Russia
[5] Riga Tech Univ, Riga, Latvia
[6] Russian Acad Sci, Joint Inst High Temp, Moscow, Russia
[7] Susquehanna Univ, Selinsgrove, PA USA
[8] Kurchatov Inst, Natl Res Ctr, Moscow, Russia
[9] Imtek Ltd, Moscow, Russia
[10] Ctr Res Inst Machine Bldg, Korolev, Moscow Region, Russia
[11] Russian Acad Sci, Inst Biomed Problems, Moscow, Russia
[12] YuA Gagarin Res & Test Cosmonaut Training Ctr, Star City, Moscow Region, Russia
[13] Stanford Univ, Dept Radiol, Canary Ctr Early Canc Detect, Palo Alto, CA 94304 USA
[14] IM Sechenov First Moscow State Med Univ, Inst Regenerat Med, Moscow 119991, Russia
[15] Riga Stradins Univ, Riga, Latvia
关键词
SIMULATED MICROGRAVITY; GROWING TISSUES; CARTILAGE; DESIGN; GROWTH; CELLS; US;
D O I
10.1126/sciadv.aba4174
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetic levitational bioassembly of three-dimensional (3D) tissue constructs represents a rapidly emerging scaffold- and label-free approach and alternative conceptual advance in tissue engineering. The magnetic bioassembler has been designed, developed, and certified for life space research. To the best of our knowledge, 3D tissue constructs have been biofabricated for the first time in space under microgravity from tissue spheroids consisting of human chondrocytes. Bioassembly and sequential tissue spheroid fusion presented a good agreement with developed predictive mathematical models and computer simulations. Tissue constructs demonstrated good viability and advanced stages of tissue spheroid fusion process. Thus, our data strongly suggest that scaffold-free formative biofabrication using magnetic fields is a feasible alternative to traditional scaffold-based approaches, hinting a new perspective avenue of research that could significantly advance tissue engineering. Magnetic levitational bioassembly in space can also advance space life science and space regenerative medicine.
引用
收藏
页数:12
相关论文
共 48 条
[31]   The Synergy of Scaffold-Based and Scaffold-Free Tissue Engineering Strategies [J].
Ovsianikov, Aleksandr ;
Khademhosseini, Ali ;
Mironov, Vladimir .
TRENDS IN BIOTECHNOLOGY, 2018, 36 (04) :348-357
[32]   Scaffold-free, label-free and nozzle-free biofabrication technology using magnetic levitational assembly [J].
Parfenov, Vladislav A. ;
Koudan, Elizaveta V. ;
Bulanova, Elena A. ;
Karalkin, Pavel A. ;
Pereira, Frederico D. A. S. ;
Norkin, Nikita E. ;
Knyazeva, Alisa D. ;
Gryadunova, Anna A. ;
Petrov, Oleg F. ;
Vasiliev, Mikhail M. ;
Myasnikov, Maxim I. ;
Chernikov, Valery P. ;
Kasyanov, Vladimir A. ;
Marchenkov, Artem Yu ;
Brakke, Kenn ;
Khesuani, Yusef D. ;
Demirci, Utkan ;
Mironov, Vladimir A. .
BIOFABRICATION, 2018, 10 (03)
[33]   Spheroid formation of human thyroid cancer cells in an automated culturing system during the Shenzhou-8 Space mission [J].
Pietsch, Jessica ;
Ma, Xiao ;
Wehland, Markus ;
Aleshcheva, Ganna ;
Schwarzwaelder, Achim ;
Segerer, Jurgen ;
Birlem, Maria ;
Horn, Astrid ;
Bauer, Johann ;
Infanger, Manfred ;
Grimm, Daniela .
BIOMATERIALS, 2013, 34 (31) :7694-7705
[34]   Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms [J].
Rogosnitzky, Moshe ;
Branch, Stacy .
BIOMETALS, 2016, 29 (03) :365-376
[35]   Spaceflight and modeled microgravity effects on microbial growth and virulence [J].
Rosenzweig, Jason A. ;
Abogunde, Ohunene ;
Thomas, Kayama ;
Lawal, Abidat ;
Nguyen, Y-Uyen ;
Sodipe, Ayodotun ;
Jejelowo, Olufisayo .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 85 (04) :885-891
[36]   Signal transduction in T lymphocytes - A comparison of the data from space, the free fall machine and the random positioning machine [J].
Schwarzenberg, M ;
Pippia, P ;
Meloni, MA ;
Cossu, G ;
Cogoli-Greuter, M ;
Cogoli, A .
LIFE SCIENCES: MICROGRAVITY RESEARCH II, 1999, 24 (06) :793-800
[37]  
Schwarzenberg M, 1998, J Gravit Physiol, V5, pP23
[38]   Three-dimensional tissue culture based on magnetic cell levitation [J].
Souza, Glauco R. ;
Molina, Jennifer R. ;
Raphael, Robert M. ;
Ozawa, Michael G. ;
Stark, Daniel J. ;
Levin, Carly S. ;
Bronk, Lawrence F. ;
Ananta, Jeyarama S. ;
Mandelin, Jami ;
Georgescu, Maria-Magdalena ;
Bankson, James A. ;
Gelovani, Juri G. ;
Killian, T. C. ;
Arap, Wadih ;
Pasqualini, Renata .
NATURE NANOTECHNOLOGY, 2010, 5 (04) :291-296
[39]   Neocartilage Formation in 1 g, Simulated, and Microgravity Environments: Implications for Tissue Engineering [J].
Stamenkovic, Vlada ;
Keller, Georg ;
Nesic, Dobrila ;
Cogoli, Augusto ;
Grogan, Shawn Patrick .
TISSUE ENGINEERING PART A, 2010, 16 (05) :1729-1736
[40]   Magnetic Levitational Assembly for Living Material Fabrication [J].
Tasoglu, Savas ;
Yu, Chu Hsiang ;
Liaudanskaya, Volha ;
Guven, Sinan ;
Migliaresi, Claudio ;
Demirci, Utkan .
ADVANCED HEALTHCARE MATERIALS, 2015, 4 (10) :1469-1476