The Evolution of Invertebrate Gene Body Methylation

被引:174
作者
Sarda, Shrutii [1 ]
Zeng, Jia [1 ]
Hunt, Brendan G. [1 ]
Yi, Soojin V. [1 ]
机构
[1] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
gene body methylation; sequence evolution; functional enrichment; gene length; DNA METHYLATION; DRAFT GENOME; PEA APHID; EXPRESSION; BASE; CPG; QUANTIFICATION; CONSERVATION; DIVERGENCE; LANDSCAPES;
D O I
10.1093/molbev/mss062
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DNA methylation of transcription units (gene bodies) occurs in the genomes of many animal and plant species. Phylogenetic persistence of gene body methylation implies biological significance; yet, the functional roles of gene body methylation remain elusive. In this study, we analyzed methylation levels of orthologs from four distantly related invertebrate species, including the honeybee, silkworm, sea squirt, and sea anemone. We demonstrate that in all four species, gene bodies distinctively cluster to two groups, which correspond to high and low methylation levels. This pattern resembles that of sequence composition arising from the mutagenetic effect of DNA methylation. In spite of this effect, our results show that protein sequences of genes targeted by high levels of methylation are conserved relative to genes lacking methylation. Our investigation identified many genes that either gained or lost methylation during the course of invertebrate evolution. Most of these genes appear to have lost methylation in the insect lineages we investigated, particularly in the honeybee. We found that genes that are methylated in all four invertebrate taxa are enriched for housekeeping functions related to transcription and translation, whereas the loss of DNA methylation occurred in genes whose functions include cellular signaling and reproductive processes. Overall, our study helps to illuminate the functional significance of gene body methylation and its impacts on genome evolution in diverse invertebrate taxa.
引用
收藏
页码:1907 / 1916
页数:10
相关论文
共 49 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]  
[Anonymous], 1990, METHOD ENZYMOL
[3]  
[Anonymous], 2002, PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4
[4]   Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells [J].
Ball, Madeleine P. ;
Li, Jin Billy ;
Gao, Yuan ;
Lee, Je-Hyuk ;
LeProust, Emily M. ;
Park, In-Hyun ;
Xie, Bin ;
Daley, George Q. ;
Church, George M. .
NATURE BIOTECHNOLOGY, 2009, 27 (04) :361-368
[5]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[6]   DNA METHYLATION AND THE FREQUENCY OF CPG IN ANIMAL DNA [J].
BIRD, AP .
NUCLEIC ACIDS RESEARCH, 1980, 8 (07) :1499-1504
[7]  
Colot V, 1999, BIOESSAYS, V21, P402, DOI 10.1002/(SICI)1521-1878(199905)21:5<402::AID-BIES7>3.0.CO
[8]  
2-B
[9]   MOLECULAR-BASIS OF BASE SUBSTITUTION HOTSPOTS IN ESCHERICHIA-COLI [J].
COULONDRE, C ;
MILLER, JH ;
FARABAUGH, PJ ;
GILBERT, W .
NATURE, 1978, 274 (5673) :775-780
[10]   The timing of eukaryotic evolution: Does a relaxed molecular clock reconcile proteins and fossils? [J].
Douzery, EJP ;
Snell, EA ;
Bapteste, E ;
Delsuc, F ;
Philippe, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (43) :15386-15391