DSP complexity of mode-division multiplexed receivers

被引:97
作者
Inan, Beril [1 ]
Spinnler, Bernhard [2 ]
Ferreira, Filipe [3 ]
van den Borne, Dirk [2 ]
Lobato, Adriana [4 ]
Adhikari, Susmita [5 ]
Sleiffer, Vincent A. J. M. [6 ]
Kuschnerov, Maxim [2 ]
Hanik, Norbert [1 ]
Jansen, Sander L. [2 ]
机构
[1] Tech Univ Munich, Inst Commun Engn, D-80333 Munich, Germany
[2] Nokia Siemens Networks GmbH & Co KG, Munich, Germany
[3] Nokia Siemens Networks Portugal SA, P-2720093 Amadora, Portugal
[4] Univ Fed Armed Forces, D-85577 Munich, Neubiberg, Germany
[5] Univ Kiel, Chair Commun, Kiel, Germany
[6] Eindhoven Univ Technol, Dept Elect Engn, COBRA Inst, NL-5600 MB Eindhoven, Netherlands
来源
OPTICS EXPRESS | 2012年 / 20卷 / 10期
关键词
TRANSMISSION;
D O I
10.1364/OE.20.010859
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The complexities of common equalizer schemes are analytically analyzed in this paper in terms of complex multiplications per bit. Based on this approach we compare the complexity of mode-division multiplexed digital signal processing algorithms with different numbers of multiplexed modes in terms of modal dispersion and distance. It is found that training symbol based equalizers have significantly lower complexity compared to blind approaches for long-haul transmission. Among the training symbol based schemes, OFDM requires the lowest complexity for crosstalk compensation in a mode-division multiplexed receiver. The main challenge for training symbol based schemes is the additional overhead required to compensate modal crosstalk, which increases the data rate. In order to achieve 2000 km transmission, the effective modal dispersion must therefore be below 6 ps/km when the OFDM specific overhead is limited to 10%. It is concluded that for few mode transmission systems the reduction of modal delay is crucial to enable long-haul performance. (C) 2012 Optical Society of America
引用
收藏
页码:10859 / 10869
页数:11
相关论文
共 16 条
[1]   Mode-division multiplexed transmission with inline few-mode fiber amplifier [J].
Bai, Neng ;
Ip, Ezra ;
Huang, Yue-Kai ;
Mateo, Eduardo ;
Yaman, Fatih ;
Li, Ming-Jun ;
Bickham, Scott ;
Ten, Sergey ;
Linares, Jesus ;
Montero, Carlos ;
Moreno, Vicente ;
Prieto, Xesus ;
Tse, Vincent ;
Chung, Kit Man ;
Lau, Alan Pak Tao ;
Tam, Hwa-Yaw ;
Lu, Chao ;
Luo, Yanhua ;
Peng, Gang-Ding ;
Li, Guifang ;
Wang, Ting .
OPTICS EXPRESS, 2012, 20 (03) :2668-2680
[2]  
Benvenuto N., 2002, ALGORITHMS COMMUNICA
[3]   MATRIX MULTIPLICATION VIA ARITHMETIC PROGRESSIONS [J].
COPPERSMITH, D ;
WINOGRAD, S .
JOURNAL OF SYMBOLIC COMPUTATION, 1990, 9 (03) :251-280
[4]  
Downie J. D., 37 EUR C EXP OPT COM
[5]   Nonlinear Semi-Analytical Model for Simulation of Few-Mode Fiber Transmission [J].
Ferreira, Filipe ;
Jansen, Sander ;
Monteiro, Paulo ;
Silva, Henrique .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2012, 24 (04) :240-242
[6]  
Inan B., 2012, OPT FIB COMM C
[7]  
Koebele C, 2011, 37 EUR C EXP OPT COM
[8]  
Krummrich P. M., 2005, Paper OThT6
[9]  
Randel S., 2012, NAT FIB OPT ENG C
[10]   6x56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6x6 MIMO equalization [J].
Randel, Sebastian ;
Ryf, Roland ;
Sierra, Alberto ;
Winzer, Peter J. ;
Gnauck, Alan H. ;
Bolle, Cristian A. ;
Essiambre, Rene-Jean ;
Peckham, David W. ;
McCurdy, Alan ;
Lingle, Robert, Jr. .
OPTICS EXPRESS, 2011, 19 (17) :16697-16707