Strong convergence of extragradient methods with a new step size for solving variational inequality problems

被引:16
作者
Duong Viet Thong [1 ]
Dang Van Hieu [2 ]
机构
[1] Natl Econ Univ, Fac Econ Math, Hanoi, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam
关键词
Extragradient method; Subgradient extragradient method; Tseng's extragradient method; Mann-type method; Variational inequality problem; 65Y05; 65K15; 68W10; 47H09; 47J25; PROJECTION METHODS; ALGORITHMS; WEAK;
D O I
10.1007/s40314-019-0899-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose two different kinds of extragradient methods with a new step size for finding an element of the set of solutions of the variational inequality problem for a monotone and Lipschitz continuous operator in real Hilbert spaces. We only use one projection to design the algorithms and the strong convergence theorems proved without the prior knowledge of the Lipschitz constant of cost operator. Numerical experiments illustrate the performances of our new algorithms and provide a comparison with related algorithms.
引用
收藏
页数:21
相关论文
共 40 条
[1]   A weak-to-strong convergence principle for Fejer-monotone methods in Hilbert spaces [J].
Bauschke, HH ;
Combettes, PL .
MATHEMATICS OF OPERATIONS RESEARCH, 2001, 26 (02) :248-264
[2]   An Inertial Tseng's Type Proximal Algorithm for Nonsmooth and Nonconvex Optimization Problems [J].
Bot, Radu Ioan ;
Csetnek, Ernoe Robert .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 171 (02) :600-616
[3]   The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space [J].
Censor, Y. ;
Gibali, A. ;
Reich, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) :318-335
[4]   Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon .
OPTIMIZATION METHODS & SOFTWARE, 2011, 26 (4-5) :827-845
[5]   Algorithms for the Split Variational Inequality Problem [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon .
NUMERICAL ALGORITHMS, 2012, 59 (02) :301-323
[6]   Extensions of Korpelevich's extragradient method for the variational inequality problem in Euclidean space [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon .
OPTIMIZATION, 2012, 61 (09) :1119-1132
[7]   A new projection method for a class of variational inequalities [J].
Dang Van Hieu ;
Duong Viet Thong .
APPLICABLE ANALYSIS, 2019, 98 (13) :2423-2439
[8]   An Explicit Parallel Algorithm for Variational Inequalities [J].
Dang Van Hieu .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (01) :201-221
[9]   New extragradient-like algorithms for strongly pseudomonotone variational inequalities [J].
Dang Van Hieu ;
Duong Viet Thong .
JOURNAL OF GLOBAL OPTIMIZATION, 2018, 70 (02) :385-399
[10]   Modified hybrid projection methods for finding common solutions to variational inequality problems [J].
Dang Van Hieu ;
Pham Ky Anh ;
Le Dung Muu .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2017, 66 (01) :75-96