Using machine learning tool in classification of breast cancer

被引:9
|
作者
Abdel-Ilah, Layla [1 ]
Sahinbegovic, Hana [1 ]
机构
[1] Int Burch Univ, Francuske Revolucije BB, Sarajevo, Bosnia & Herceg
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING 2017 (CMBEBIH 2017) | 2017年 / 62卷
关键词
Artificial Neural Network; breast cancer; classification; machine learning; malignant; benign; accuracy; fine-needle aspirates; Wisconsin Breast Cancer Database (WBCD);
D O I
10.1007/978-981-10-4166-2_1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This research implements a feed forward back propagation network (FFBPN) for classification of breast cancer cases to malignant or benign. The purpose of the research is to design an Artificial Neural Network (ANN) with high and acceptable level of accuracy by selecting the number of hidden layers, number of neurons in the hidden layer and the type of activation functions in hidden layers. Samples for training and validation of ANN are obtained from Wisconsin Breast Cancer Database (WBCD) which is open access dataset. The dataset contains 699 samples that were distributed to two groups: 599 samples in training setand 100 samples in testing set. Each sample has 9 attributes representing 9 characteristics of breast fine-needle aspirates (FNAs) as inputs of the network. This experiment includes a comparison among the obtained mean square error (MSE) when using three transfer functions: LOGSIG, TANSIG, and PURELINE in neural network architetcures. Impact of different number of layers (1, 2, and 3 layers were used)in ANN architectureon output accuracy was also investigated. Also, this research provides the results of ANN performance for different number of neurons in hidden layer (20, 21, 22, 23, 24 neurons were implemented). The results show that the best network design is that one with three hidden layers, 21 neurons in the hidden layer, and TANSIG as activation function.
引用
收藏
页码:3 / 8
页数:6
相关论文
共 50 条
  • [1] Breast Cancer Type Classification Using Machine Learning
    Wu, Jiande
    Hicks, Chindo
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (02): : 1 - 12
  • [2] Breast Cancer: Classification of Tumors Using Machine Learning Algorithms
    Hettich, David
    Olson, Megan
    Jackson, Andie
    Kaabouch, Naima
    2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND VIRTUAL ENVIRONMENTS FOR MEASUREMENT SYSTEMS AND APPLICATIONS (IEEE CIVEMSA 2021), 2021,
  • [3] Classification of Breast Cancer Data Using Machine Learning Algorithms
    Akbugday, Burak
    2019 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2019, : 429 - 432
  • [4] An Optimized Framework for Breast Cancer Classification Using Machine Learning
    Michael, Epimack
    Ma, He
    Li, Hong
    Qi, Shouliang
    BIOMED RESEARCH INTERNATIONAL, 2022, 2022
  • [5] Breast Cancer Classification: Features Investigation Using Machine Learning Approaches
    Mashudi, Nurul Amirah
    Rossli, Syaidathul Amaleena
    Ahmad, Norulhusna
    Noor, Norliza Mohd
    INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 2021, 13 (05): : 107 - 118
  • [6] An Efficient Breast Cancer Detection Using Machine Learning Classification Models
    Kumar, B. N. Ravi
    Gowda, Naveen Chandra
    Ambika, B. J.
    Veena, H. N.
    Ben Sujitha, B.
    Ramani, D. Roja
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2024, 20 (13) : 24 - 40
  • [7] Breast Cancer Classification Using AdaBoost-Extreme Learning Machine
    Sharifmoghadam, Mahboobe
    Jazayeriy, Hamid
    2019 5TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS 2019), 2019,
  • [8] The Classification of Breast Cancer with Machine Learning Techniques
    Kolay, Nurdan
    Erdogmus, Pakize
    2016 ELECTRIC ELECTRONICS, COMPUTER SCIENCE, BIOMEDICAL ENGINEERINGS' MEETING (EBBT), 2016,
  • [9] Machine Learning Techniques for Classification of Breast Cancer
    Osmanovic, Ahmed
    Halilovic, Sabina
    Ilah, Layla Abdel
    Fojnica, Adnan
    Gromilic, Zehra
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2018, VOL 1, 2019, 68 (01): : 197 - 200
  • [10] Probabilistic machine learning for breast cancer classification
    Leventi-Peetz, Anastasia -Maria
    Weber, Kai
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (01) : 624 - 655