PeakVI: A deep generative model for single-cell chromatin accessibility analysis

被引:24
作者
Ashuach, Tal [1 ]
Reidenbach, Daniel A. [2 ]
Gayoso, Adam [1 ]
Yosef, Nir [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Berkeley, Ctr Computat Biol, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[3] Ragon Inst MGH MIT & Harvard, Cambridge, MA 02139 USA
[4] Chan Zuckerberg BioHub, San Francisco, CA 94158 USA
来源
CELL REPORTS METHODS | 2022年 / 2卷 / 03期
关键词
deep learning; single-cell ATAC-seq; single-cell chromatin accessibility; single-cell genomics;
D O I
10.1016/j.crmeth.2022.100182
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell ATAC sequencing (scATAC-seq) is a powerful and increasingly popular technique to explore the regulatory landscape of heterogeneous cellular populations. However, the high noise levels, degree of sparsity, and scale of the generated data make its analysis challenging. Here, we present PeakVI, a probabilistic framework that leverages deep neural networks to analyze scATAC-seq data. PeakVI fits an informative latent space that preserves biological heterogeneity while correcting batch effects and accounting for technical effects, such as library size and region-specific biases. In addition, PeakVI provides a technique for identifying differential accessibility at a single-region resolution, which can be used for cell-type annotation as well as identification of key cis-regulatory elements. We use public datasets to demonstrate that PeakVI is scalable, stable, robust to low-quality data, and outperforms current analysis methods on a range of critical analysis tasks. PeakVI is publicly available and implemented in the scvi-tools framework.
引用
收藏
页数:17
相关论文
共 41 条
  • [1] High-resolution mapping and characterization of open chromatin across the genome
    Boyle, Alan P.
    Davis, Sean
    Shulha, Hennady P.
    Meltzer, Paul
    Margulies, Elliott H.
    Weng, Zhiping
    Furey, Terrence S.
    Crawford, Gregory E.
    [J]. CELL, 2008, 132 (02) : 311 - 322
  • [2] Single-cell chromatin accessibility reveals principles of regulatory variation
    Buenostro, Jason D.
    Wu, Beijing
    Litzenburger, Ulrike M.
    Ruff, Dave
    Gonzales, Michael L.
    Snyder, Michael P.
    Chang, Howard Y.
    Greenleaf, William J.
    [J]. NATURE, 2015, 523 (7561) : 486 - U264
  • [3] Buenrostro Jason D, 2015, Curr Protoc Mol Biol, V109, DOI 10.1002/0471142727.mb2129s109
  • [4] Landscape of stimulation-responsive chromatin across diverse human immune cells
    Calderon, Diego
    Nguyen, Michelle L. T.
    Mezger, Anja
    Kathiria, Arwa
    Mueller, Fabian
    Nguyen, Vinh
    Lescano, Ninnia
    Wu, Beijing
    Trombetta, John
    Ribado, Jessica, V
    Knowles, David A.
    Gao, Ziyue
    Blaeschke, Franziska
    Parent, Audrey, V
    Burt, Trevor D.
    Anderson, Mark S.
    Criswell, Lindsey A.
    Greenleaf, William J.
    Marson, Alexander
    Pritchard, Jonathan K.
    [J]. NATURE GENETICS, 2019, 51 (10) : 1494 - +
  • [5] Carlson Marc., 2015, TxDb.Hsapiens.UCSC.hg19
  • [6] Enrichr: interactive and collaborative HTML']HTML5 gene list enrichment analysis tool
    Chen, Edward Y.
    Tan, Christopher M.
    Kou, Yan
    Duan, Qiaonan
    Wang, Zichen
    Meirelles, Gabriela Vaz
    Clark, Neil R.
    Ma'ayan, Avi
    [J]. BMC BIOINFORMATICS, 2013, 14
  • [7] Assessment of computational methods for the analysis of single-cell ATAC-seq data
    Chen, Huidong
    Lareau, Caleb A.
    Andreani, Tommaso
    Vinyard, Michael E.
    Garcia, Sara P.
    Clement, Kendell
    Andrade-Navarro, Miguel
    Buenrostro, Jason D.
    Pinello, Luca
    [J]. GENOME BIOLOGY, 2019, 20 (01)
  • [8] Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS)
    Crawford, GE
    Holt, IE
    Whittle, J
    Webb, BD
    Tai, D
    Davis, S
    Margulies, EH
    Chen, YD
    Bernat, JA
    Ginsburg, D
    Zhou, DX
    Luo, SJ
    Vasicek, TJ
    Daly, MJ
    Wolfsberg, TG
    Collins, FS
    [J]. GENOME RESEARCH, 2006, 16 (01) : 123 - 131
  • [9] Comprehensive analysis of single cell ATAC-seq data with SnapATAC
    Fang, Rongxin
    Preissl, Sebastian
    Li, Yang
    Hou, Xiaomeng
    Lucero, Jacinta
    Wang, Xinxin
    Motamedi, Amir
    Shiau, Andrew K.
    Zhou, Xinzhu
    Xie, Fangming
    Mukamel, Eran A.
    Zhang, Kai
    Zhang, Yanxiao
    Behrens, M. Margarita
    Ecker, Joseph R.
    Ren, Bing
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [10] Gayoso A., 2021, BIORXIV, DOI [DOI 10.1101/2021.04.28.441833, 10.1101/2021.04.28.441833]