Class Boundary Exemplar Selection Based Incremental Learning for Automatic Target Recognition

被引:47
作者
Dang, Sihang [1 ]
Cao, Zongjie [1 ,2 ]
Cui, Zongyong [1 ]
Pi, Yiming [1 ]
Liu, Nengyuan [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Ctr Informat Geosci, Chengdu 611731, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2020年 / 58卷 / 08期
基金
中国国家自然科学基金;
关键词
Automatic target recognition (ATR); exemplar selection; incremental learning; NONSTATIONARY DATA STREAMS; REPRESENTATION; CLASSIFICATION; KERNEL;
D O I
10.1109/TGRS.2020.2970076
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
When adding new tasks/classes in an incremental learning scenario, the previous recognition capabilities trained on the previous training data can be lost. In the real-life application of automatic target recognition (ATR), part of the previous samples may be able to be used. Most incremental learning methods have not considered how to save the previous key samples. In this article, the class boundary exemplar selection-based incremental learning (CBesIL) is proposed to save the previous recognition capabilities in the form of the class boundary exemplars. For exemplar selection, the class boundary selection method based on local geometrical and statistical information is proposed. And when adding new classes continually, a class-boundary-based data reconstruction method is introduced to update the exemplar set. Thus, when adding new classes, the previous class boundaries could be kept complete. Experimental results demonstrate that the proposed CBesIL outperforms the other state of the art on the accuracy of multiclass recognition and class-incremental recognition.
引用
收藏
页码:5782 / 5792
页数:11
相关论文
共 43 条
  • [1] Artac M, 2002, INT C PATT RECOG, P781, DOI 10.1109/ICPR.2002.1048133
  • [2] Automatic target recognition with joint sparse representation of heterogeneous multi-view SAR images over a locally adaptive dictionary
    Cao, Zongjie
    Xu, Liyuan
    Feng, Jilan
    [J]. SIGNAL PROCESSING, 2016, 126 : 27 - 34
  • [3] End-to-End Incremental Learning
    Castro, Francisco M.
    Marin-Jimenez, Manuel J.
    Guil, Nicolas
    Schmid, Cordelia
    Alahari, Karteek
    [J]. COMPUTER VISION - ECCV 2018, PT XII, 2018, 11216 : 241 - 257
  • [4] Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence
    Chaudhry, Arslan
    Dokania, Puneet K.
    Ajanthan, Thalaiyasingam
    Torr, Philip H. S.
    [J]. COMPUTER VISION - ECCV 2018, PT XI, 2018, 11215 : 556 - 572
  • [5] Target Classification Using the Deep Convolutional Networks for SAR Images
    Chen, Sizhe
    Wang, Haipeng
    Xu, Feng
    Jin, Ya-Qiu
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08): : 4806 - 4817
  • [6] The training of neural classifiers with condensed datasets
    Choi, SH
    Rockett, P
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2002, 32 (02): : 202 - 206
  • [7] SAR Unlabeled Target Recognition Based on Updating CNN With Assistant Decision
    Cui, Zongyong
    Tang, Cui
    Cao, Zongjie
    Dang, Sihang
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (10) : 1585 - 1589
  • [8] Open Set Incremental Learning for Automatic Target Recognition
    Dang, Sihang
    Cao, Zongjie
    Cui, Zongyong
    Pi, Yiming
    Liu, Nengyuan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (07): : 4445 - 4456
  • [9] SAR Target Recognition via Incremental Nonnegative Matrix Factorization
    Dang, Sihang
    Cui, Zongyong
    Cao, Zongjie
    Liu, Nengyuan
    [J]. REMOTE SENSING, 2018, 10 (03):
  • [10] Dang SH, 2017, IEEE RAD CONF, P530, DOI 10.1109/RADAR.2017.7944260