Differential Effects of Legume Species on the Recovery of Soil Microbial Communities, and Carbon and Nitrogen Contents, in Abandoned Fields of the Loess Plateau, China

被引:28
|
作者
Li, Jin Hua [1 ,2 ,3 ]
Jiao, Shu Mei [2 ]
Gao, Rong Qing [2 ]
Bardgett, Richard D. [3 ]
机构
[1] Lanzhou Univ, State Key Lab Grassland Agroecosyst, Lanzhou 730020, Peoples R China
[2] Lanzhou Univ, Sch Life Sci, Lanzhou 730000, Peoples R China
[3] Univ Lancaster, Lancaster Environm Ctr, Soil & Ecosyst Ecol Lab, Lancaster LA1 4YQ, England
基金
中国国家自然科学基金;
关键词
Soil microbial biomass; Soil carbon; Functional diversity; Abandoned field; Legume species; Ecological restoration; ORGANIC-CARBON; EXTRACTION METHOD; BIOMASS CARBON; CLIMATE-CHANGE; DIVERSITY; GRASSLAND; FOREST; MANAGEMENT; WATER; RHIZOSPHERE;
D O I
10.1007/s00267-012-9958-7
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Plant-soil interactions are known to influence a wide range of ecosystem-level functions. Moreover, the recovery of these functions is of importance for the successful restoration of soils that have been degraded through intensive and/or inappropriate land use. Here, we assessed the effect of planting treatments commonly used to accelerate rates of grassland restoration, namely introduction of different legume species Medicago sativa, Astragalus adsurgens, Melilotus suaveolens, on the recovery of soil microbial communities and carbon and nitrogen contents in abandoned fields of the Loess Plateau, China. The results showed effects were species-specific, and either positive, neutral or negative depending on the measure and time-scale. All legumes increased basal respiration and metabolic quotient and had a positive effect on activity and functional diversity of the soil microbial community, measured using Biolog EcoPlate. However, soil under Astragalus adsurgens had the highest activity and functional diversity relative to the other treatments. Soil carbon and nitrogen content and microbial biomass were effectively restored in 3-5 years by introducing Medicago sativa and Astragalus adsurgens into early abandoned fields. Soil carbon and nitrogen content were retarded in 3-5 years and microbial biomass was retarded in the fifth year by introducing Melilotus suaveolens. Overall, the restoration practices of planting legumes can significantly affect soil carbon and nitrogen contents, and the biomass, activity, and functional diversity of soil microbial community. Therefore, we propose certain legume species could be used to accelerate ecological restoration of degraded soils, hence assist in the protection and preservation of the environment.
引用
收藏
页码:1193 / 1203
页数:11
相关论文
共 50 条
  • [21] Effects of vegetation restoration on soil aggregates, organic carbon, and nitrogen in the Loess Plateau of China
    Wang, Bin
    Xu, Guoce
    Ma, Tiantian
    Chen, Li
    Cheng, Yuting
    Li, Peng
    Li, Zhanbin
    Zhang, Yixin
    CATENA, 2023, 231
  • [22] Identifying a suitable revegetation method for soil organic carbon, nitrogen, and phosphorus sequestration: A 16-year in situ experiment on abandoned farmland in a semiarid area of the Loess Plateau, China
    Song, Xin
    Fang, Chao
    Lal, Rattan
    Yuan, Zi-Qiang
    Ke, Wen-Bin
    Huang, Fu-Qiang
    Wei, Yong-Xian
    Li, Feng-Min
    Sardans, Jordi
    Penuelas, Josep
    LAND DEGRADATION & DEVELOPMENT, 2022, 33 (13) : 2366 - 2378
  • [23] Responses of soil microbial communities to vegetation restoration on the Loess Plateau of China: A meta-analysis
    Sha, Guoliang
    Chen, Yuxuan
    Wei, Tianxing
    Guo, Xin
    Yu, Huan
    Jiang, Shan
    Xin, Pengcheng
    Ren, Kang
    APPLIED SOIL ECOLOGY, 2023, 189
  • [24] Changes in Soil Carbon and Nitrogen following Land Abandonment of Farmland on the Loess Plateau, China
    Deng, Lei
    Shangguan, Zhou-Ping
    Sweeney, Sandra
    PLOS ONE, 2013, 8 (08):
  • [25] Response of soil microbial communities and nitrogen thresholds of Bothriochloa ischaemum to short-term nitrogen addition on the Loess Plateau
    Zhang, Jiaoyang
    Ai, Zemin
    Liang, Chutao
    Wang, Guoliang
    Xue, Sha
    GEODERMA, 2017, 308 : 112 - 119
  • [26] Planted forests intensified soil microbial metabolic nitrogen and phosphorus limitation on the Loess Plateau, China
    Yan, Benshuai
    Duan, Mengcheng
    Wang, Runchao
    Li, Jingjing
    Wei, Furong
    Chen, Jiarui
    Wang, Jie
    Wu, Yang
    Wang, Guoliang
    CATENA, 2022, 211
  • [27] Effects of land use changes on soil organic carbon, nitrogen and their losses in a typical watershed of the Loess Plateau, China
    Zhu, Guangyu
    Shangguan, Zhouping
    Hu, Xinzhi
    Deng, Lei
    ECOLOGICAL INDICATORS, 2021, 133
  • [28] The effects of ecological construction and topography on soil organic carbon and total nitrogen in the Loess Plateau of China
    Shi, Peng
    Duan, Jinxiao
    Zhang, Yan
    Li, Peng
    Wang, Xiukang
    Li, Zhanbin
    Xiao, Lie
    Xu, Guoce
    Lu, Kexin
    Cheng, Shengdong
    Ren, Zongping
    Zhang, Yi
    Yang, Wengang
    ENVIRONMENTAL EARTH SCIENCES, 2019, 78 (01)
  • [29] Effects of farmland conversion on the stoichiometry of carbon, nitrogen, and phosphorus in soil aggregates on the Loess Plateau of China
    Zhang, Yi
    Li, Peng
    Liu, Xiaojun
    Xiao, Lie
    Shi, Peng
    Zhao, Binhua
    GEODERMA, 2019, 351 : 188 - 196
  • [30] Seasonal Variations and Assembly Patterns of Soil Microbial Communities in Different Forest Types on the Loess Plateau, China
    Chen, Shuyi
    Xiao, Lie
    Yuwen, Peiyao
    Min, Xuxu
    Li, Peng
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2025, 25 (01) : 1105 - 1118