Change detection of remote sensing images with semi-supervised multilayer perceptron

被引:0
作者
Patra, Swarnajyoti [3 ]
Ghosh, Susmita [3 ]
Ghosh, Ashish [1 ,2 ]
机构
[1] Indian Stat Inst, Machine Intelligence Unit, Kolkata 700108, India
[2] Indian Stat Inst, Ctr Soft Comp Res, Kolkata 700108, India
[3] Jadavpur Univ, Dept Comp Sci & Engn, Kolkata 700032, India
关键词
semi-supervised learning; remote-sensing; change-detection; multitemporal images; neural network;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A context-sensitive change-detection technique based on semi-supervised learning with multilayer perceptron is proposed here. In order to take contextual information into account, input patterns are generated considering each pixel of the difference image along with its neighboring pixels. A heuristic technique is suggested to identify a few initial labeled patterns without using ground truth information. The network is initially trained using these labeled data. The unlabeled patterns are iteratively processed by the already trained perceptron to obtain a soft class label. Experimental results, carried out on two multispectral and multitemporal remote sensing images, confirm the effectiveness of the proposed approach.
引用
收藏
页码:429 / 442
页数:14
相关论文
共 50 条
[21]   SEMI-SUPERVISED OBJECT DETECTION IN REMOTE SENSING IMAGES USING GENERATIVE ADVERSARIAL NETWORKS [J].
Chen, Guowei ;
Liu, Lei ;
Hu, Wenlong ;
Pan, Zongxu .
IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, :2503-2506
[22]   Semi-supervised Classification for Remote Sensing Datasets [J].
Hernandez-Sequeira, Itza ;
Fernandez-Beltran, Ruben ;
Xu, Yonghao ;
Ghamisi, Pedram ;
Pla, Filiberto .
IMAGE ANALYSIS AND PROCESSING, ICIAP 2023, PT I, 2023, 14233 :463-474
[23]   Semi-Supervised Object Detection for Remote Sensing Images Using Consistent Dense Pseudo-Labels [J].
Zhao, Tong ;
Zeng, Yujun ;
Fang, Qiang ;
Xu, Xin ;
Xie, Haibin .
REMOTE SENSING, 2025, 17 (08)
[24]   Active Versus Semi-supervised Learning Paradigm for the Classification of Remote Sensing Images [J].
Persello, Claudio ;
Bruzzone, Lorenzo .
IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XVII, 2011, 8180
[25]   Semi-Supervised Semantic Segmentation of Remote Sensing Images With Iterative Contrastive Network [J].
Wang, Jia-Xin ;
Chen, Si-Bao ;
Ding, Chris H. Q. ;
Tang, Jin ;
Luo, Bin .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[26]   Semi Supervised Change Detection Method of Remote Sensing Image [J].
Nie, Wei ;
Gou, Peng ;
Liu, Yang ;
Shrestha, Bhaskar ;
Zhou, Tianyu ;
Xu, Nuo ;
Wang, Peng ;
Du, Qiqi .
2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, :1013-1019
[27]   Perturbation Matters: A Novel Approach for Semi-Supervised Remote Sensing Imagery Change Detection [J].
Peng, Daifeng ;
Liu, Min ;
Guan, Haiyan .
REMOTE SENSING, 2025, 17 (04)
[28]   ECPS: Cross Pseudo Supervision Based on Ensemble Learning for Semi-Supervised Remote Sensing Change Detection [J].
Yang, Yuqun ;
Tang, Xu ;
Ma, Jingjing ;
Zhang, Xiangrong ;
Pei, Shiji ;
Jiao, Licheng .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 :1-17
[29]   A Coarse-to-Fine Semi-Supervised Change Detection for Multispectral Images [J].
Zhang, Wuxia ;
Lu, Xiaoqiang ;
Li, Xuelong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (06) :3587-3599
[30]   Decouple and weight semi-supervised semantic segmentation of remote sensing images [J].
Huang, Wei ;
Shi, Yilei ;
Xiong, Zhitong ;
Zhu, Xiao Xiang .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 212 :13-26