List decoding of q-ary Reed-Muller codes

被引:44
作者
Pellikaan, R
Wu, XW
机构
[1] Tech Univ Eindhoven, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
关键词
Guruswami-Sudan algorithm; list decoding; order domain; q-ary Reed-Muller (RM) codes; subfield subcodes;
D O I
10.1109/TIT.2004.825043
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The q-ary Reed-Muller (RM) codes RMq(u,m) of length n = q(m) are a generalization of Reed-Solomon (RS) codes, which use polynomials in m variables to encode messages through functional encoding. Using an idea of reducing the multivariate case to the univariate case, randomized list-decoding algorithms for RM codes were given in [1] and [15]. The algorithm in [15] is an improvement of the algorithm in [1], it is applicable to codes RMq(u,m) with u < q/2 and works for up to E < n (1-root2u/q) errors. In this correspondence, following [6], we show that q-ary RM codes are subfield subcodes; of RS codes over F-qm. Then, using the list-decoding algorithm in [5] for RS codes over F,m, we present a list-decoding algorithm for q-ary RM codes. This algorithm is applicable to codes of any rates, and achieves an error-correction bound n(1-root(n-d)/n). The algorithm achieves a better error-correction bound than the algorithm in [15], since when u is small n (1-root/(n-d)/n) = n(1-1rootu/q) The implementation of the algorithm requires O (n) field operations in F-q and O(n(3)) field operations in F-qm under some assumption.
引用
收藏
页码:679 / 682
页数:4
相关论文
共 50 条
  • [31] LIST DECODING OF REED SOLOMON CODES FOR WAVELET BASED COLOUR IMAGE WATERMARKING SCHEME
    Abdul, Wadood
    Carre, Philippe
    Gaborit, Philippe
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 3637 - +
  • [32] Multistage list decoding of generalized Reed-Solomon codes over Galois rings
    Armand, MA
    de Taisne, O
    IEEE COMMUNICATIONS LETTERS, 2005, 9 (07) : 625 - 627
  • [33] Combinatorial List-Decoding of Reed-Solomon Codes beyond the Johnson Radius
    Chong Shangguan
    Tamo, Itzhak
    PROCEEDINGS OF THE 52ND ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '20), 2020, : 538 - 551
  • [34] A minimal search soft decision list decoding algorithm for reed-solomon codes
    Yamuna, B. (b_yamuna@cb.amrita.edu), 1600, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (06): : 71 - 85
  • [35] Secure Codes With List Decoding
    Gu, Yujie
    Vorobyev, Ilya
    Miao, Ying
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (04) : 2430 - 2442
  • [36] List Decoding of Polar Codes
    Tal, Ido
    Vardy, Alexander
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (05) : 2213 - 2226
  • [37] List decoding of wavelet codes
    Litichevskii, D. V.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2019, 53 : 115 - 126
  • [38] List decoding of turbo codes
    Narayanan, KR
    Stuber, GL
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1998, 46 (06) : 754 - 762
  • [39] An Interpolation Procedure for List Decoding Reed-Solomon Codes Based on Generalized Key Equations
    Zeh, Alexander
    Gentner, Christian
    Augot, Daniel
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (09) : 5946 - 5959
  • [40] List-Decoding and List-Recovery of Reed-Solomon Codes Beyond the Johnson Radius for Every Rate
    Goldberg, Eitan
    Shangguan, Chong
    Tamo, Itzhak
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (04) : 2261 - 2268