Gold nanoparticles decorated reduced graphene oxide for detecting the presence and cellular release of nitric oxide

被引:63
作者
Ting, Siong Luong [1 ]
Guo, Chun Xian [2 ]
Leong, Kam Chew [3 ]
Kim, Dong-Hwan [1 ]
Li, Chang Ming [1 ,2 ]
Chen, Peng [1 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, Div Bioengn, Singapore 637457, Singapore
[2] Southwest Univ, Inst Clean Energy & Adv Mat, Chongqing 400715, Peoples R China
[3] GlobalFoundries Singapore, Singapore 738406, Singapore
关键词
Graphene; Gold nanoparticles; Electrochemical sensor; Nitric oxide detection; Nanocomposite; ELECTROCHEMICAL DETECTION; DIABETES-MELLITUS; ELECTRODE; MICROSENSOR; NANOSHEETS; BEHAVIOR; PATHWAY; SHEETS; FILM;
D O I
10.1016/j.electacta.2013.08.036
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, we report the preparation of a nanocomposite consisting of gold nanoparticles (AuNPs) electrochemically deposited on electrochemically reduced graphene oxide (ERGO), and its use for sub-micromolar detection of nitric oxide (NO). ERGO network provides highly conductive pathways for electron conduction and a large surface area for catalyst support, while AuNPs act as efficient electrocatalysts toward the oxidation of NO. The synergistic integration of ERGO and AuNP realizes the electrochemical detection of NO with high sensitivity (5.38 mu A/mu M/cm(2)), low detection limit (133 nM with a S/N = similar to 5.5), and a fast response time (3 s). Furthermore, we demonstrate the use of the AuNP-ERGO hybrid electrode to detect the dynamic release of NO from live human umbilical vein endothelial cells (HUVECs). (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:441 / 446
页数:6
相关论文
共 49 条
[1]   A selective nitric oxide nanocomposite biosensor based on direct electron transfer of microperoxidase: Removal of interferences by co-immobilized enzymes [J].
Abdelwahab, Adel A. ;
Koh, Wei Choon Alvin ;
Noh, Hui-Bog ;
Shim, Yoon-Bo .
BIOSENSORS & BIOELECTRONICS, 2010, 26 (03) :1080-1086
[2]   Comparative Response of Biosensing Platforms Based on Synthesized Graphene Oxide and Electrochemically Reduced Graphene [J].
Casero, E. ;
Alonso, C. ;
Vazquez, L. ;
Petit-Dominguez, M. D. ;
Parra-Alfambra, A. M. ;
de la Fuente, M. ;
Merino, P. ;
Alvarez-Garcia, S. ;
de Andres, A. ;
Pariente, F. ;
Lorenzo, E. .
ELECTROANALYSIS, 2013, 25 (01) :154-165
[3]   Fabrication of gold nanoparticles on bilayer graphene for glucose electrochemical biosensing [J].
Chen, Yun ;
Li, Yang ;
Sun, Dong ;
Tian, Danbi ;
Zhang, Jianrong ;
Zhu, Jun-Jie .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (21) :7604-7611
[4]   ENDOTHELIUM-DEPENDENT HYPERPOLARIZATION - BEYOND NITRIC-OXIDE AND CYCLIC-GMP [J].
COHEN, RA ;
VANHOUTTE, PM .
CIRCULATION, 1995, 92 (11) :3337-3349
[5]   Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J].
Daniel, MC ;
Astruc, D .
CHEMICAL REVIEWS, 2004, 104 (01) :293-346
[6]   In Situ Synthesis of Reduced Graphene Oxide and Gold Nanocomposites for Nanoelectronics and Biosensing [J].
Dong, Xiaochen ;
Huang, Wei ;
Chen, Peng .
NANOSCALE RESEARCH LETTERS, 2011, 6 :1-6
[7]  
Furchgott R.F., 1999, PRIX NOBEL, V1998, P226
[8]   Surface Modification of Graphene Nanosheets with Gold Nanoparticles: The Role of Oxygen Moieties at Graphene Surface on Gold Nucleation and Growth [J].
Goncalves, Gil ;
Marques, Paula A. A. P. ;
Granadeiro, Carlos M. ;
Nogueira, Helena I. S. ;
Singh, M. K. ;
Gracio, J. .
CHEMISTRY OF MATERIALS, 2009, 21 (20) :4796-4802
[9]  
Granger DN, 1996, METHOD ENZYMOL, V269, P434
[10]   Layered Graphene/Quantum Dots for Photovoltaic Devices [J].
Guo, Chun Xian ;
Yang, Hong Bin ;
Sheng, Zhao Min ;
Lu, Zhi Song ;
Song, Qun Liang ;
Li, Chang Ming .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (17) :3014-3017