A convergence theorem for a common solution of f-fixed point, variational inequality and generalized mixed equilibrium problems in Banach spaces

被引:0
作者
Zegeye, Solomon Bekele [1 ]
Zegeye, Habtu [2 ]
Sangago, Mengistu Goa [1 ]
Boikanyo, Oganeditse A. [2 ]
机构
[1] Univ Botswana, Fac Sci, Dept Math, Pvt Bag 00704, Gaborone, Botswana
[2] Botswana Int Univ Sci & Technol, Fac Sci, Dept Math & Stat Sci, Private Bag 16, Palapye, Botswana
来源
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS | 2022年 / 13卷 / 02期
关键词
Generalized mixed equilibrium problem; Variational inequality problem; f-pseudocontractive mapping; monotone mapping; reflexive Banach spaces; APPROXIMATION;
D O I
10.22075/ijnaa.2022.25363.2995
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to construct an algorithm for approximating a common element of the set of solutions of a finite family of generalized mixed equilibrium problems, the set of f-fixed points of a finite family of f-pseudocontractive mappings and the set of solutions of a finite family of variational inequality problems for Lipschitz monotone mappings in real reflexive Banach spaces.
引用
收藏
页码:1069 / 1087
页数:19
相关论文
共 25 条
[1]   Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces [J].
Bauschke, HH ;
Borwein, JM ;
Combettes, PL .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) :615-647
[2]   An algorithm for approximating a common solution of some nonlinear problems in Banach spaces with an application [J].
Bello, Abdulmalik U. ;
Nnakwe, Monday O. .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
[3]  
Blum E., 1994, Math. Student, V63, P123
[4]  
Bonnans J. F., 2013, PERTURBATION ANAL OP
[5]  
Bregman LM., 1967, USSR Comput. Math. Math. Phys, V7, P200, DOI DOI 10.1016/0041-5553(67)90040-7
[7]   Bregman distances, totally convex functions, and a method for solving operator equations in banach spaces [J].
Butnariu, Dan ;
Resmerita, Elena .
ABSTRACT AND APPLIED ANALYSIS, 2006,
[8]   A hybrid iterative scheme for mixed equilibrium problems and fixed point problems [J].
Ceng, Lu-Chuan ;
Yao, Jen-Chih .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 214 (01) :186-201
[9]  
Darvish V., 2016, Math. Morav, V20, P69, DOI [10.5937/MatMor1601069D, DOI 10.5937/MATMOR1601069D]
[10]   Shrinking Extragradient Method for Pseudomonotone Equilibrium Problems and Quasi-Nonexpansive Mappings [J].
Khonchaliew, Manatchanok ;
Farajzadeh, Ali ;
Petrot, Narin .
SYMMETRY-BASEL, 2019, 11 (04)