Creating Adhesive and Soluble Gradients for Imaging Cell Migration with Fluorescence Microscopy

被引:5
作者
Ngalim, Siti Hawa [1 ,2 ]
Magenau, Astrid [1 ,2 ]
Zhu, Ying [2 ,3 ]
Tonnesen, Lotte [1 ,2 ]
Fairjones, Zoe [1 ,2 ]
Gooding, J. Justin [2 ,3 ]
Boecking, Till [1 ,2 ]
Gaus, Katharina [1 ,2 ]
机构
[1] Univ New S Wales, Ctr Vasc Res, Sydney, NSW 2052, Australia
[2] Univ New S Wales, Australian Ctr Nanomed, Sydney, NSW 2052, Australia
[3] Univ New S Wales, Sch Chem, Sydney, NSW 2052, Australia
来源
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS | 2013年 / 74期
基金
澳大利亚研究理事会; 英国医学研究理事会;
关键词
Bioengineering; Issue; 74; Microbiology; Cellular Biology; Biochemistry; Molecular Biology; Biophysics; Cell migration; live cell imaging; soluble and adherent gradients; microcontact printing; dip pen lithography; microfluidics; RGD; PEG; biotin; streptavidin; chemotaxis; chemoattractant; imaging; CHEMOTAXIS; ASSAY;
D O I
10.3791/50310
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cells can sense and migrate towards higher concentrations of adhesive cues such as the glycoproteins of the extracellular matrix and soluble cues such as growth factors. Here, we outline a method to create opposing gradients of adhesive and soluble cues in a microfluidic chamber, which is compatible with live cell imaging. A copolymer of poly-L-lysine and polyethylene glycol (PLL-PEG) is employed to passivate glass coverslips and prevent non-specific adsorption of biomolecules and cells. Next, microcontact printing or dip pen lithography are used to create tracks of streptavidin on the passivated surfaces to serve as anchoring points for the biotinylated peptide arginine-glycine-aspartic acid (RGD) as the adhesive cue. A microfluidic device is placed onto the modified surface and used to create the gradient of adhesive cues (100% RGD to 0% RGD) on the streptavidin tracks. Finally, the same microfluidic device is used to create a gradient of a chemoattractant such as fetal bovine serum (FBS), as the soluble cue in the opposite direction of the gradient of adhesive cues.
引用
收藏
页数:8
相关论文
共 33 条
[1]  
Chung Bong Geun, 2007, J Vis Exp, P271, DOI 10.3791/271
[2]   Plasticity of cell migration: a multiscale tuning model [J].
Friedl, Peter ;
Wolf, Katarina .
JOURNAL OF CELL BIOLOGY, 2010, 188 (01) :11-19
[3]  
Geiger B., 2011, COLD SPRING HARBOR P, V3
[4]   Environmental sensing through focal adhesions [J].
Geiger, Benjamin ;
Spatz, Joachim P. ;
Bershadsky, Alexander D. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2009, 10 (01) :21-33
[5]  
GmbH I, 2010, FAQ COMM QUEST MU SL
[6]   The cytoskeleton and cancer [J].
Hall, Alan .
CANCER AND METASTASIS REVIEWS, 2009, 28 (1-2) :5-14
[7]   Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques [J].
Hillborg, H ;
Ankner, JF ;
Gedde, UW ;
Smith, GD ;
Yasuda, HK ;
Wikström, K .
POLYMER, 2000, 41 (18) :6851-6863
[8]   Microfluidics-based devices: New tools for studying cancer and cancer stem cell migration [J].
Huang, Yu ;
Agrawal, Basheal ;
Sun, Dandan ;
Kuo, John S. ;
Williams, Justin C. .
BIOMICROFLUIDICS, 2011, 5 (01)
[9]   Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device [J].
Jeon, NL ;
Baskaran, H ;
Dertinger, SKW ;
Whitesides, GM ;
Van de Water, L ;
Toner, M .
NATURE BIOTECHNOLOGY, 2002, 20 (08) :826-830
[10]   Chemotaxis, chemokine receptors and human disease [J].
Jin, Tian ;
Xu, Xuehua ;
Hereld, Dale .
CYTOKINE, 2008, 44 (01) :1-8