On Certain Identities with Automorphisms on Lie Ideals in Prime and Semiprime Rings

被引:0
作者
De Filippis, Vincenzo [1 ]
Rehman, Nadeem Ur [2 ]
机构
[1] Univ Messina, Dept Engn, I-98166 Messina, Italy
[2] Aligarh Muslim Univ, Dept Math, Aligarh, Uttar Pradesh, India
关键词
automorphism; (semi-)prime ring; Lie ideal; DIFFERENTIAL IDENTITIES; DERIVATIONS; VALUES;
D O I
10.1142/S1005386719000099
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a prime ring of characteristic different from 2, Z(R) its center, L a Lie ideal of R, and m, n, s, t >= 1 fixed integers with t <= m + n + s. Suppose that alpha is a non-trivial automorphism of R and let Phi(x,y) = [x, y](t) - [x y](m) [alpha( [x ,y]), [x,y]](n) [x,y](s). Thus, (a) if Phi(u, v) = 0 for any u,v is an element of L, then L subset of Z(R); (b) if Phi(u,v) is an element of Z(R) for any u, v is an element of L, then either L subset of Z(R) or R satisfies s(4), the standard identity of degree 4. We also extend the results to semiprime rings.
引用
收藏
页码:93 / 104
页数:12
相关论文
共 27 条
[1]  
[Anonymous], 1989, MATH J OKAYAMA U
[2]  
Ashraf M., 1995, REND SEM MAT U POL T, V53, P61
[3]  
Beidar K.I., 1996, MONOGRAPHS TXB PURE
[4]   CENTRALIZING MAPPINGS OF SEMIPRIME RINGS [J].
BELL, HE ;
MARTINDALE, WS .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1987, 30 (01) :92-101
[5]   LIE IDEALS AND DERIVATIONS OF PRIME-RINGS [J].
BERGEN, J ;
HERSTEIN, IN ;
KERR, JW .
JOURNAL OF ALGEBRA, 1981, 71 (01) :259-267
[6]   Commutators with power central values on a Lie ideal [J].
Carini, L ;
De Filippis, V .
PACIFIC JOURNAL OF MATHEMATICS, 2000, 193 (02) :269-278
[7]  
CARINI L, 1985, B UNIONE MAT ITAL, V4A, P497
[8]  
Chuang CL, 2006, PUBL MATH-DEBRECEN, V68, P161
[9]   DIFFERENTIAL IDENTITIES WITH AUTOMORPHISMS AND ANTIAUTOMORPHISMS .2. [J].
CHUANG, CL .
JOURNAL OF ALGEBRA, 1993, 160 (01) :130-171
[10]   GPIS HAVING COEFFICIENTS IN UTUMI QUOTIENT-RINGS [J].
CHUANG, CL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (03) :723-728