Tunable interband and intraband plasmons in twisted double bilayer graphene

被引:7
作者
Chakraborty, Atasi [1 ]
Dutta, Debasis [1 ]
Agarwal, Amit [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Phys, Kanpur 208016, India
关键词
DIELECTRIC-CONSTANT; QUANTUM; BANDS; MODES;
D O I
10.1103/PhysRevB.106.155422
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Flat bands in twisted moire superlattices support a variety of topological and strongly correlated phenomena along with easily tunable electrical and optical properties. Here, we demonstrate the existence of long lived, flat intraband and interband plasmons in twisted double bilayer graphene. We show that the interband plasmons originate from the presence of a Van Hove singularity in the joint density of states and a finite Berry connection between the pair of bands involved. We find that the gapped interband plasmon mode has a universal dispersion, and the plasmon gap is specified by the location of the Van Hove singularity in the joint density of states. Metallic moire systems support an additional intraband plasmon mode which becomes flat in the large momentum limit because of the influence of higher interband transitions. We demonstrate that the undamped and flat plasmon modes in moire systems are highly tunable and can be controlled by varying the vertical electric field and electron doping, and they persist over a wide range of twist angles.
引用
收藏
页数:17
相关论文
共 77 条
  • [21] Universal slow plasmons and giant field enhancement in atomically thin quasi-two-dimensional metals
    da Jornada, Felipe H.
    Xian, Lede
    Rubio, Angel
    Louie, Steven G.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [22] Two-dimensional and π plasmon spectra in pristine and doped graphene
    Despoja, V.
    Novko, D.
    Dekanic, K.
    Sunjic, M.
    Marusic, L.
    [J]. PHYSICAL REVIEW B, 2013, 87 (07):
  • [23] Fizeau drag in graphene plasmonics
    Dong, Y.
    Xiong, L.
    Phinney, I. Y.
    Sun, Z.
    Jing, R.
    McLeod, A. S.
    Zhang, S.
    Liu, S.
    Ruta, F. L.
    Gao, H.
    Dong, Z.
    Pan, R.
    Edgar, J. H.
    Jarillo-Herrero, P.
    Levitov, L. S.
    Millis, A. J.
    Fogler, M. M.
    Bandurin, D. A.
    Basov, D. N.
    [J]. NATURE, 2021, 594 (7864) : 513 - +
  • [24] Collective plasmonic modes in the chiral multifold fermionic material CoSi
    Dutta, Debasis
    Ghosh, Barun
    Singh, Bahadur
    Lin, Hsin
    Politano, Antonio
    Bansil, Arun
    Agarwal, Amit
    [J]. PHYSICAL REVIEW B, 2022, 105 (16)
  • [25] Gate-tuning of graphene plasmons revealed by infrared nano-imaging
    Fei, Z.
    Rodin, A. S.
    Andreev, G. O.
    Bao, W.
    McLeod, A. S.
    Wagner, M.
    Zhang, L. M.
    Zhao, Z.
    Thiemens, M.
    Dominguez, G.
    Fogler, M. M.
    Castro Neto, A. H.
    Lau, C. N.
    Keilmann, F.
    Basov, D. N.
    [J]. NATURE, 2012, 487 (7405) : 82 - 85
  • [26] Dielectric-matrix calculation of the volume-plasmon dispersion relation for silicon
    Forsyth, AJ
    Josefsson, TW
    Smith, AE
    [J]. PHYSICAL REVIEW B, 1996, 54 (20): : 14355 - 14361
  • [27] Magic-angle semimetals
    Fu, Yixing
    Konig, Elio J.
    Wilson, Justin H.
    Chou, Yang-Zhi
    Pixley, Jedediah H.
    [J]. NPJ QUANTUM MATERIALS, 2020, 5 (01)
  • [28] Excitation of Plasmonic Waves in Graphene by Guided-Mode Resonances
    Gao, Weilu
    Shu, Jie
    Qiu, Ciyuan
    Xu, Qianfan
    [J]. ACS NANO, 2012, 6 (09) : 7806 - 7813
  • [29] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191
  • [30] Giuliani G., 2005, Quantum Theory of the Electron Liquid