Electrochemical performance and effect of moisture on Ba0.5Sr0.5Sc0.175Nb0.025Co0.8O3-δ oxide as a promising electrode for proton-conducting solid oxide fuel cells

被引:52
|
作者
Zhang, Yidan [1 ]
Zhu, Ankang [1 ]
Guo, Youmin [1 ]
Wang, Chunchang [1 ]
Ni, Meng [2 ]
Yu, Hao [3 ]
Zhang, Chuanhui [4 ]
Shao, Zongping [5 ,6 ]
机构
[1] Anhui Univ, Sch Phys & Mat Sci, 111 Jiulong Rd, Hefei 230601, Anhui, Peoples R China
[2] Hong Kong Polytech Univ, Dept Bldg & Real Estate, Hung Hom, Kowloon, Hong Kong, Peoples R China
[3] Shandong Univ Sci & Technol, Coll Chem & Environm Engn, Qingdao 266590, Peoples R China
[4] Qingdao Univ, Sch Mat Sci & Engn, Inst Mat Energy & Environm, Qingdao 266071, Peoples R China
[5] Nanjing Univ Technol, Coll Chem & Chem Engn, State Key Lab Mat Oriented Chem Engn, 5 Xin Mofan Rd, Nanjing 210009, Peoples R China
[6] Curtin Univ, Dept Chem Engn, Perth, WA 6845, Australia
基金
中国国家自然科学基金;
关键词
Proton conducting solid oxide fuel cells; Co-doping; Cathode; Oxygen reduction reaction; Electrochemical impedance spectroscopy; OXYGEN REDUCTION REACTION; CHEMICAL-STABILITY; CATHODE; PEROVSKITE;
D O I
10.1016/j.apenergy.2019.01.094
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Proton conducting solid oxide fuel cells are solid state electrochemical devices for power generation at a conversion efficiency (>60%) higher than conventional thermal power plants (similar to 40%). The cathode is the key component of proton conducting solid oxide fuel cells as it contributes to more than 50% of the total over-potential loss of an H+-SOFC with thin film electrolyte. This work aims to develop high performance and durable cathode for proton conducting solid oxide fuel cells by doping Ba2+ into the Sr-site of the SrSc0.175Nb0.025Co0.8O3-delta perovskite oxide. The influence of moisture on the catalytic activity of Ba0.5Sr0.5Sc0.175Nb0.025Co0.8O3-delta cathode was investigated using electrochemical impedance spectroscopy of symmetric cell at 600 degrees C. The resistance in the low-frequency range was found to be the rate-limiting step of the oxygen reduction reaction in the dry air, while the resistance in the medium-frequency range became the rate limiting step in the moist air. With a Ba(0.5)Sr(0.5)Sc(0.175)Nb(0.02)5Co(0.8)O(3-delta) cathode, a proton conducting single cell achieved good performance at a temperature of 700 degrees C with a power density of 633 mW cm(-2). However, the performance of single cell decreased with time, probably due to the agglomeration of cathode particles and the coverage of produced water on the active surface. To improve the durability of the proton conducting solid oxide fuel cell, it is critical to minimize the cathode particle agglomeration and remove the produced water effectively. The research results contribute to the development of high-performance fuel cell for efficient energy conversion.
引用
收藏
页码:344 / 350
页数:7
相关论文
共 50 条
  • [21] GdBa0.5Sr0.5Co2O5+δ layered perovskite as promising cathode for proton conducting solid oxide fuel cells
    Ding, Hanping
    Xue, Xingjian
    JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 496 (1-2) : 683 - 686
  • [22] A new Sc-doped La0.5Sr0.5MnO3-d cathode allows high performance for proton-conducting solid oxide fuel cells
    Dai, Hailu
    Yin, Yanru
    Li, Xiaomei
    Ma, Chengjian
    Chen, Zhengjie
    Hua, Maoyi
    Bi, Lei
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2022, 32
  • [23] Ba0.5Sr0.5Zn0.2Fe0.8O3-δ-BaCe0.5Zr0.3Y0.16Zn0.04O3-δ composite cathode for proton-conducting solid oxide fuel cells
    Lu, Xiaoyong
    Ding, Yanzhi
    Chen, Yonghong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 484 (1-2) : 856 - 859
  • [24] Mo-doped Ba0.5Sr0.5Co0.8Fe0.2O3-? as a high-performance symmetric electrode for solid oxide fuel cells
    Shen, Yufan
    Song, Yang
    Zhao, Yunxia
    Zhao, Juzheng
    Yan, Manyu
    Lu, Qian
    Bu, Yunfei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 928
  • [25] SrCo0.8Nb0.1Ta0.1O3-δ Based Cathodes for Electrolyte-Supported Proton-Conducting Solid Oxide Fuel Cells: Comparison with Ba0.5Sr0.5Co0.8Fe0.2O3-δ Based Cathodes and Implications
    Sun, Shichen
    Cheng, Zhe
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (02)
  • [26] Electrochemical performance and stability of La0.5Sr0.5Fe0.9Nb0.1O3-δ symmetric electrode for solid oxide fuel cells
    Bian, Liuzhen
    Duan, Chuancheng
    Wang, Lijun
    Zhu, Liangzhu
    O'Hayre, Ryan
    Chou, Kuo-Chih
    JOURNAL OF POWER SOURCES, 2018, 399 : 398 - 405
  • [27] Composite cathode materials Ag-Ba0.5Sr0.5Co0.8Fe0.2O3 for solid oxide fuel cells
    Michał Mosiałek
    Magdalena Dudek
    Aneta Michna
    Maciej Tatko
    Aneta Kędra
    Małgorzata Zimowska
    Journal of Solid State Electrochemistry, 2014, 18 : 3011 - 3021
  • [28] Chromium Deposition and Poisoning at Ba0.5Sr0.5Co0.8Fe0.2O3-δ Cathode of Solid Oxide Fuel Cells
    Kim, Yu-Mi
    Chen, Xinbing
    Jiang, San Ping
    Bae, Joongmyeon
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2011, 14 (04) : B41 - B45
  • [29] Composite cathode materials Ag-Ba0.5Sr0.5Co0.8Fe0.2O3 for solid oxide fuel cells
    Mosialek, Michal
    Dudek, Magdalena
    Michna, Aneta
    Tatko, Maciej
    Kedra, Aneta
    Zimowska, Magorzata
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (11) : 3011 - 3021
  • [30] A High-Performance, Nanostructured Ba0.5Sr0.5Co0.8Fe0.2O3-δ Cathode for Solid-Oxide Fuel Cells
    Liu, Bin
    Chen, Xiaobo
    Dong, Yonglai
    Mao, Samuel S.
    Cheng, Mojie
    ADVANCED ENERGY MATERIALS, 2011, 1 (03) : 343 - 346