A short note on tetracyclic graphs with extremal values of Randic index

被引:3
作者
Elumalai, Suresh [1 ]
Mansour, Toufik [1 ]
机构
[1] Univ Haifa, Dept Math, IL-3498838 Haifa, Israel
关键词
Randic index; tetracyclic graph;
D O I
10.1142/S1793557120501053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple graph. The Randic index of G is defined as the sum of 1/root d(u)d(v) over all edges uv of G, where d(v) denotes the vertex degree of v in G. Dehghan-Zadeh, Ashrafi and Habibi gave Tetracyclic graphs with extremal values of Randic index. We first point out that Theorem 1 is not completely correct and the number of nonisomorphic tetracyclic graphs on seven vertices given in Fig. 4 is incomplete and incorrect and in this short note, we present the correct version of it.
引用
收藏
页数:5
相关论文
共 5 条
[1]   Graphs with maximum connectivity index [J].
Caporossi, G ;
Gutman, I ;
Hansen, P ;
Pavlovic, L .
COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2003, 27 (01) :85-90
[2]   Tetracyclic graphs with extremal values of Randić index [J].
Dehghan-Zadeh T. ;
Ashrafi A.R. ;
Habibi N. .
Bollettino dell'Unione Matematica Italiana, 2015, 8 (1) :9-16
[3]  
Dehghan-Zadeh T., 2015, MATCH Commun. Math. Comput. Chem, V74, P137
[4]   On Randic Indices of Trees, Unicyclic Graphs, and Bicyclic Graphs [J].
Du, Zhibin ;
Zhou, Bo .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2011, 111 (12) :2760-2770
[5]   CHARACTERIZATION OF MOLECULAR BRANCHING [J].
RANDIC, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1975, 97 (23) :6609-6615