Superposition operators, Hardy spaces, and Dirichlet type spaces

被引:5
作者
Galanopoulos, Petros [1 ]
Girela, Daniel [2 ]
Marquez, Maria Auxiliadora [2 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Math, Thessaloniki 54124, Greece
[2] Univ Malaga, Anal Matemat, Campus Teatinos, E-29071 Malaga, Spain
关键词
Hardy spaces; Dirichlet spaces; Superposition operators; UNIVALENT-FUNCTIONS; ANALYTIC-FUNCTIONS; CARLESON MEASURES; Q(P) SPACES; ZEROS; MULTIPLIERS; GROWTH;
D O I
10.1016/j.jmaa.2018.03.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For 0 < p < oo and alpha > 1 the space of Dirichlet type D-alpha(p): consists of those functions f which are analytic in the unit disc D and satisfy f(D) (1 - |z|)(alpha)|f'(z)|(P) dA(z) < infinity. The space D-p(p-1) is the closest one to the Hardy space H-P among all the D-alpha(p) Our main object in this paper is studying similarities and differences between the spaces HP and D-p-1(p) (0 < p < infinity) regarding superposition operators. Namely, for 0 < p < infinity and 0 < a < infinity, we characterize the entire functions phi such that the superposition operator S-phi. with symbol p maps the conformally invariant space Q. into the space D-p-1(p), and, also, those which map D-p-1(p) into Q. and we compare these results with the corresponding ones with HP in the place of D-p-1(p). We also study the more general question of characterizing the superposition operators mapping vg, into Q. and Q. into D-alpha(p), for any admissible triplet of numbers (p, alpha, s). (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:659 / 680
页数:22
相关论文
共 40 条
[1]   Superposition operators between the Bloch space and Bergman spaces [J].
Alvarez, V ;
Márquez, MA ;
Vukotic, D .
ARKIV FOR MATEMATIK, 2004, 42 (02) :205-216
[2]  
ANDERSON JM, 1974, J REINE ANGEW MATH, V270, P12
[3]   Operator theoretic differences between Hardy and Dirichlet-type spaces [J].
Angel Pelaez, Jose ;
Perez-Gonzalez, Fernando ;
Rattya, Jouni .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 418 (01) :387-402
[4]  
[Anonymous], 1980, ANALYTIC FUNCTIONS B
[5]  
[Anonymous], 2007, MATH SURVEYS MONOGRA
[6]  
AULASKARI R, 1994, PITMAN RES, V359, P136
[7]   Taylor coefficients and mean growth of the derivative of Qp functions [J].
Aulaskari, R ;
Girela, D ;
Wulan, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 258 (02) :415-428
[8]  
Aulaskari R, 1996, ROCKY MT J MATH, V26, P485, DOI 10.1216/rmjm/1181072070
[9]  
Aulaskari R., 1995, Analysis, V15, P101
[10]   Univalent functions, Hardy spaces and spaces of Dirichlet type [J].
Baernstein, A ;
Girela, D ;
Peláez, JA .
ILLINOIS JOURNAL OF MATHEMATICS, 2004, 48 (03) :837-859