Dependence of the Product Chain-Length on Detergents for Long-Chain E-Polyprenyl Diphosphate Synthases

被引:7
作者
Pan, Jian-Jung [1 ]
Ramamoorthy, Gurusankar [1 ]
Poulter, C. Dale [1 ]
机构
[1] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA
关键词
UNDECAPRENYL PYROPHOSPHATE SYNTHASE; STATE KINETIC-ANALYSIS; ESCHERICHIA-COLI; SP NOV; GENE; MECHANISM; PRENYLTRANSFERASE; IDENTIFICATION; UBIQUINONE-10; PURIFICATION;
D O I
10.1021/bi400681d
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Long-chain E-polyprenyl diphosphate synthases (E-PDS) catalyze repetitive addition of isopentenyl diphosphate (IPP) to the growing prenyl chain of an allylic diphosphate. The polyprenyl diphosphate products are required for the biosynthesis of ubiquinones and menaquinones required for electron transport during oxidative phosphorylation to generate ATP. In vitro, the long-chain PDSs require addition of phospholipids or detergents to the assay buffer to enhance product release and maintain efficient turnover. During preliminary assays of product chain-length with anionic, zwitterionic, and nonionic detergents, we discovered considerable variability. Examination of a series of nonionic PEG detergents with several long-chain E-PDSs from different organisms revealed that in vitro incubations with nonaethylene glycol monododecyl ether or Triton X-100 typically gave chain-lengths that corresponded to those of the isoprenoid moieties in respiratory quinones synthesized in vivo. In contrast, incubations in buffer with n-butanol, CHAPS, DMSO, n-octyl-beta-glucopyranoside, or beta-cyclodextrin or in buffer without detergent typically proceeded more slowly and gave a broad range of chain-lengths.
引用
收藏
页码:5002 / 5008
页数:7
相关论文
共 27 条
[1]   The tomato cisprenyltransferase gene family [J].
Akhtar, Tariq A. ;
Matsuba, Yuki ;
Schauvinhold, Ines ;
Yu, Geng ;
Lees, Hazel A. ;
Klein, Samuel E. ;
Pichersky, Eran .
PLANT JOURNAL, 2013, 73 (04) :640-652
[2]  
ALLEN CM, 1985, METHOD ENZYMOL, V110, P281
[3]   Targeting a Uniquely Nonspecific Prenyl Synthase with Bisphosphonates to Combat Cryptosporidiosis [J].
Artz, Jennifer D. ;
Dunford, James E. ;
Arrowood, Michael J. ;
Dong, Aiping ;
Chruszcz, Maksymilian ;
Kavanagh, Kathryn L. ;
Minor, Wladek ;
Russell, R. Graham G. ;
Ebetino, F. Hal ;
Oppermann, Udo ;
Hui, Raymond .
CHEMISTRY & BIOLOGY, 2008, 15 (12) :1296-1306
[4]   THE IDENTIFICATION OF ESCHERICHIA-COLI ISPB (CEL) GENE ENCODING THE OCTAPRENYL DIPHOSPHATE SYNTHASE [J].
ASAI, K ;
FUJISAKI, S ;
NISHIMURA, Y ;
NISHINO, T ;
OKADA, K ;
NAKAGAWA, T ;
KAWAMUKAI, M ;
MATSUDA, H .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1994, 202 (01) :340-345
[5]  
Barton L. L., 2005, STRUCTURAL FUNCTIONA, P413
[6]   Catalytic mechanism revealed by the crystal structure of undecaprenyl pyrophosphate synthase in complex with sulfate, magnesium, and triton [J].
Chang, SY ;
Ko, TP ;
Liang, PH ;
Wang, AHJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (31) :29298-29307
[7]   DISTRIBUTION OF MENAQUINONES IN ACTINOMYCETES AND CORYNEBACTERIA [J].
COLLINS, MD ;
PIROUZ, T ;
GOODFELLOW, M ;
MINNIKIN, DE .
JOURNAL OF GENERAL MICROBIOLOGY, 1977, 100 (JUN) :221-230
[8]   PHOSPHORYLATION OF ISOPRENOID ALCOHOLS [J].
DAVISSON, VJ ;
WOODSIDE, AB ;
NEAL, TR ;
STREMLER, KE ;
MUEHLBACHER, M ;
POULTER, CD .
JOURNAL OF ORGANIC CHEMISTRY, 1986, 51 (25) :4768-4779
[9]   A solanesyl-diphosphate synthase localizes in glycosomes of Trypanosoma cruzi [J].
Ferella, Marcela ;
Montalvetti, Andrea ;
Rohloff, Peter ;
Miranda, Kildare ;
Fang, Jianmin ;
Reina, Silvia ;
Kawamukai, Makoto ;
Bua, Jacqueline ;
Nilsson, Daniel ;
Pravia, Carlos ;
Katzin, Alejandro ;
Cassera, Maria B. ;
Aslund, Lena ;
Andersson, Bjorn ;
Docampo, Roberto ;
Bontempi, Esteban J. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (51) :39339-39348
[10]   Functional analysis of two solanesyl diphosphate synthases from Arabidopsis thaliana [J].
Hirooka, K ;
Izumi, Y ;
An, CI ;
Nakazawa, Y ;
Fukusaki, E ;
Kobayashi, A .
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2005, 69 (03) :592-601