A cheapest nonconforming rectangular finite element for the stationary Stokes problem

被引:8
作者
Nam, Hyun [1 ]
Choi, Hyung Jun [1 ]
Park, Chunjae [2 ]
Sheen, Dongwoo [1 ,3 ]
机构
[1] Seoul Natl Univ, Dept Math, Seoul 151747, South Korea
[2] Konkuk Univ, Dept Math, Seoul 143701, South Korea
[3] Seoul Natl Univ, Interdisciplinary Program Computat Sci & Technol, Seoul 151747, South Korea
关键词
Stokes equations; Nonconforming finite element; Bubble function; UNIFYING THEORY; STABILIZATION;
D O I
10.1016/j.cma.2013.01.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a least degrees of freedom nonconforming finite element pair to approximate the Stokes equations based on quadrilateral meshes. The finite element space for the velocity field is composed of the P-1-nonconforming quadrilateral element plus only one additional global DSSY (Douglas-Santos-Sheen-Ye) or RT (Rannacher-Turek) type of bubble function. The pressure field is approximated by the piecewise constant function. We show that the discrete problem is nonsingular and the element pair satisfies a weak discrete inf-sup condition. Several numerical examples are shown to confirm the efficiency and reliability of the proposed method. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 86
页数:10
相关论文
共 42 条
[1]   P1-NONCONFORMING FINITE ELEMENTS ON TRIANGULATIONS INTO TRIANGLES AND QUADRILATERALS [J].
Altmann, R. ;
Carstensen, C. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (02) :418-438
[2]  
[Anonymous], TEXTS APPL MATH
[3]  
[Anonymous], 1984, CALCOLO, DOI 10.1007/bf02576171
[4]   A simple pressure stabilization method for the Stokes equation [J].
Becker, Roland ;
Hansbo, Peter .
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2008, 24 (11) :1421-1430
[5]  
BERNARDI C, 1985, MATH COMPUT, V44, P71, DOI 10.1090/S0025-5718-1985-0771031-7
[6]   Stabilization of low-order mixed finite elements for the Stokes equations [J].
Bochev, PB ;
Dohrmann, CR ;
Gunzburger, MD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (01) :82-101
[7]   A RELATIONSHIP BETWEEN STABILIZED FINITE-ELEMENT METHODS AND THE GALERKIN METHOD WITH BUBBLE FUNCTIONS [J].
BREZZI, F ;
BRISTEAU, MO ;
FRANCA, LP ;
MALLET, M ;
ROGE, G .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 96 (01) :117-129
[8]   STABILIZED MIXED METHODS FOR THE STOKES PROBLEM [J].
BREZZI, F ;
DOUGLAS, J .
NUMERISCHE MATHEMATIK, 1988, 53 (1-2) :225-235
[9]  
Brezzi F., 1991, SPRINGER SERIES COMP, V15
[10]   Nonconforming quadrilateral finite elements: a correction (vol 37, pg 253, 2000) [J].
Cai, Z ;
Douglas, J ;
Santos, JE ;
Sheen, D ;
Ye, X .
CALCOLO, 2000, 37 (04) :253-254