Detection of hydrogen using graphene

被引:31
作者
Ehemann, Robert C. [1 ]
Krstic, Predrag S. [2 ,3 ]
Dadras, Jonny [3 ]
Kent, Paul R. C. [4 ]
Jakowski, Jacek [5 ]
机构
[1] Middle Tennessee State Univ, Dept Phys & Astron, Murfreesboro, TN 37130 USA
[2] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA
[3] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[4] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[5] Univ Tennessee, Natl Inst Computat Sci, Oak Ridge, TN 37831 USA
来源
NANOSCALE RESEARCH LETTERS | 2012年 / 7卷
关键词
Graphene; DFTB; Hydrogen detection; HOMO-LUMO gap; Molecular dynamics; MOLECULAR-DYNAMICS SIMULATION; TIGHT-BINDING; DFTB METHOD; POTENTIALS; ENERGIES;
D O I
10.1186/1556-276X-7-198
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Irradiation dynamics of a single graphene sheet bombarded by hydrogen atoms is studied in the incident energy range of 0.1 to 200 eV. Results for reflection, transmission, and adsorption probabilities, as well as effects of a single adsorbed atom to the electronic properties of graphene, are obtained by the quantum-classical Monte Carlo molecular dynamics within a self-consistent-charge-density functional tight binding formalism We compare these results with those, distinctly different, obtained by the classical molecular dynamics. PACS: 61.80.Az, 61.48.Gh, 61.80.Jh, 34.50.Dy.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 34 条
[1]   Extreme hydrogen sensitivity of the transport properties of single-wall carbon-nanotube capsules [J].
Andriotis, AN ;
Menon, M ;
Srivastava, D ;
Froudakis, G .
PHYSICAL REVIEW B, 2001, 64 (19)
[2]  
[Anonymous], ANN REPORT NATL I FU
[3]  
[Anonymous], PHYS REV B
[4]   A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J].
Brenner, DW ;
Shenderova, OA ;
Harrison, JA ;
Stuart, SJ ;
Ni, B ;
Sinnott, SB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) :783-802
[5]   Quantum transport modeling of defected graphene nanoribbons [J].
Deretzis, I. ;
Fiori, G. ;
Iannaccone, G. ;
Piccitto, G. ;
La Magna, A. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2012, 44 (06) :981-984
[6]   Pillared Graphene: A New 3-D Network Nanostructure for Enhanced Hydrogen Storage [J].
Dimitrakakis, Georgios K. ;
Tylianakis, Emmanuel ;
Froudakis, George E. .
NANO LETTERS, 2008, 8 (10) :3166-3170
[7]   Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane [J].
Elias, D. C. ;
Nair, R. R. ;
Mohiuddin, T. M. G. ;
Morozov, S. V. ;
Blake, P. ;
Halsall, M. P. ;
Ferrari, A. C. ;
Boukhvalov, D. W. ;
Katsnelson, M. I. ;
Geim, A. K. ;
Novoselov, K. S. .
SCIENCE, 2009, 323 (5914) :610-613
[8]   Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties [J].
Elstner, M ;
Porezag, D ;
Jungnickel, G ;
Elsner, J ;
Haugk, M ;
Frauenheim, T ;
Suhai, S ;
Seifert, G .
PHYSICAL REVIEW B, 1998, 58 (11) :7260-7268
[9]   The SCC-DFTB method and its application to biological systems [J].
Elstner, M. .
THEORETICAL CHEMISTRY ACCOUNTS, 2006, 116 (1-3) :316-325
[10]   Band Gap Tuning of Hydrogenated Graphene: H Coverage and Configuration Dependence [J].
Gao, Haili ;
Wang, Lu ;
Zhao, Jijun ;
Ding, Feng ;
Lu, Jianping .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (08) :3236-3242