Multipartite entanglement concentration of electron-spin states with CNOT gates

被引:13
作者
Ren Bao-Cang [1 ]
Hua Ming [1 ]
Li Tao [1 ]
Du Fang-Fang [1 ]
Deng Fu-Guo [1 ]
机构
[1] Beijing Normal Univ, Dept Phys, Appl Opt Beijing Area Major Lab, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
entanglement concentration; electron-spin states; decoherence; quantum communication; QUANTUM STATE; PURIFICATION; COMMUNICATION; TELEPORTATION; CHANNELS;
D O I
10.1088/1674-1056/21/9/090303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a different entanglement concentration protocol (ECP) for nonlocal N-electron systems in a partially entangled Bell-type pure state using the CNOT gates and the projection measurements on an additional electron. For each nonlocal N-electron system, Alice first entangles it with the additional electron, and then she projects the additional electron onto an orthogonal basis for dividing the N-electron systems into two groups. In the first group, the N parties obtain a subset of N-electron systems in a maximally entangled state directly. In the second group, they obtain some less-entangled N-electron systems, which are the resource for the entanglement concentration in the next round. By iterating the entanglement concentration process several times, the present ECP has the maximal success probability, which is the theoretical limit of an ECP, equal to the entanglement of the partially entangled state, and higher than the others. This ECP may be useful in quantum computers based on electron-spin systems in the future.
引用
收藏
页数:6
相关论文
共 64 条
[1]   Charge detection enables free-electron quantum computation [J].
Beenakker, CWJ ;
DiVincenzo, DP ;
Emary, C ;
Kindermann, M .
PHYSICAL REVIEW LETTERS, 2004, 93 (02) :020501-1
[2]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[3]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[4]   Purification of noisy entanglement and faithful teleportation via noisy channels [J].
Bennett, CH ;
Brassard, G ;
Popescu, S ;
Schumacher, B ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :722-725
[5]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[6]   Purification via entanglement swapping and conserved entanglement [J].
Bose, S ;
Vedral, V ;
Knight, PL .
PHYSICAL REVIEW A, 1999, 60 (01) :194-197
[7]   A practical two-way system of quantum key distribution with untrusted source [J].
Chen Ming-Juan ;
Liu Xiang .
CHINESE PHYSICS B, 2011, 20 (10)
[8]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[9]   Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements [J].
Deng, F. -G. ;
Li, X. -H. ;
Li, C. -Y. ;
Zhou, P. ;
Zhou, H. -Y. .
EUROPEAN PHYSICAL JOURNAL D, 2006, 39 (03) :459-464
[10]   Improving the security of multiparty quantum secret sharing against Trojan horse attack [J].
Deng, FG ;
Li, XH ;
Zhou, HY ;
Zhang, ZJ .
PHYSICAL REVIEW A, 2005, 72 (04)