Potential for phytoextraction of copper, lead, and zinc by rice (Oryza sativa L.), soybean (Glycine max [L.] Merr.), and maize (Zea mays L.)

被引:67
|
作者
Murakami, Masaharu [1 ]
Ae, Noriharu [1 ]
机构
[1] Natl Inst Agroenvironm Sci, Div Soil Environm, Tsukuba, Ibaraki 3058604, Japan
关键词
Maize; Phytoextraction; Rice; Soil pollution; Soybean; METAL-CONTAMINATED SOILS; ENHANCED PHYTOEXTRACTION; HEAVY-METALS; CADMIUM CONTAMINATION; CHEMICAL EXTRACTANTS; MOLECULAR-WEIGHT; L ROOTS; MANGANESE; PLANT; PHYTOREMEDIATION;
D O I
10.1016/j.jhazmat.2008.06.003
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Phytoextraction by hyperaccumulators has been proposed for decreasing toxic-metal concentrations of contaminated soils. However, hyperaccumulators have several shortcomings to introduce these species into Asian Monsoon's agricultural fields contaminated with low to moderate toxic-metals. To evaluate the phytoextraction potential, maize (Gold Dent), soybean (Enrei and Suzuyutaka), and rice (Nipponbare and Milyang 23) were pot-grown under aerobic soil conditions for 60 d on the Andosol or Fluvisol with low to moderate copper (Cu), lead (Pb), and zinc (Zn) contamination. After 2 months cultivation, the Gold Dent maize and Milyang 23 rice shoots took up 20.2-29.5% and 18.5-20.2% of the 0.1 mol L-1 HCl-extractable Cu, 10.0-37.3% and 8.5-34.3% of the DTPA-extractable Cu, and 2.4-6.5% and 2.1-5.9% of the total Cu, respectively, in the two soils. Suzuyutaka soybean shoot took up 23.0-29.4% of the 0.1 mol L-1 HCl-extractable Zn, 35.1-52.6% of the DTPA-extractable Zn, and 3.8-5.3% of the total Zn in the two soils. Therefore, there is a great potential for Cu phytoextraction by the Gold Dent maize and the Milyang 23 rice and for Zn phytoextraction by the Suzuyutaka soybean from paddy soils with low to moderate contamination under aerobic soil conditions. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1185 / 1192
页数:8
相关论文
共 50 条
  • [1] Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.)
    Murakami, M.
    Ae, N.
    Ishikawa, S.
    ENVIRONMENTAL POLLUTION, 2007, 145 (01) : 96 - 103
  • [2] IMPACT OF ALLELOPATHIC POTENTIAL OF MAIZE (ZEA MAYS L.) ON PHYSIOLOGY AND GROWTH OF SOYBEAN [GLYCINE MAX (L.) MERR.]
    Ahmad, Naseer
    Bano, Asghari
    PAKISTAN JOURNAL OF BOTANY, 2013, 45 (04) : 1187 - 1192
  • [3] Effect of forage aqueous extracts on Glycine max L. Merr., Zea mays L. and Bidens pilosa L.
    Zonetti, Patricia da Costa
    Dotto, Gabriela
    Franca de Carvalho, Terciliana Francielle
    Bido, Graciene de Souza
    Gomes Correa, Baia Carvalho
    Albrecht, Leandro Paiola
    Paiola Albrecht, Alfredo Junior
    REVISTA DE LA FACULTAD DE CIENCIAS AGRARIAS, 2022, 54 (01) : 70 - 76
  • [4] Evaluation of mechanical and combined chemical with mechanical weeding in maize (Zea mays L.), soybean (Glycine max (L.) Merr. and winter wheat (Triticum aestivum L.)
    Gerhards, Roland
    Huesgen, Kerstin
    Gehring, Klaus
    PLANT SOIL AND ENVIRONMENT, 2024, 70 (12) : 751 - 759
  • [5] Anti-drift performance of a hoods spray system for soybean (Glycine max (L.) Merr.)-maize (Zea mays L.) strip intercropping
    Wang, Guanqun
    Liu, Mengmi
    Ou, Mingxiong
    Jia, Weidong
    Jiang, Li
    Li, Ziyu
    Dong, Xiang
    Huang, Yourui
    Zhang, Tie
    CROP PROTECTION, 2024, 181
  • [6] Quality and carotenoid compositions of extrudates produced from composite biofortified maize (Zea mays L.) and soybean (Glycine max (L.) Merr.) flours
    Adegunwa, M. O.
    Ayanlowo, J. E.
    Olatunde, G. O.
    Adebanjo, L. A.
    Alamu, E. O.
    COGENT CHEMISTRY, 2020, 6 (01):
  • [7] Differences in the rates of ethylene production and growth between the calluses derived from rice (Oryza sativa L.) and soybean (Glycine max (L.) Merr.)
    Imakawa, AM
    Saka, H
    Yonekawa, S
    Hirai, A
    PLANT PRODUCTION SCIENCE, 2002, 5 (01) : 11 - 16
  • [8] Recombination hotspots in soybean [Glycine max (L.) Merr.]
    McConaughy, Samantha
    Amundsen, Keenan
    Song, Qijian
    Pantalone, Vince
    Hyten, David
    G3-GENES GENOMES GENETICS, 2023, 13 (06):
  • [9] Management of Amaranthus rudis S. in glyphosate-resistant corn (Zea mays L.) and soybean (Glycine max L. Merr.)
    Schuster, Christopher L.
    Smeda, Reid J.
    CROP PROTECTION, 2007, 26 (09) : 1436 - 1443
  • [10] Hydrogen emission from nodulated soybeans [Glycine max (L.) Merr.] and consequences for the productivity of a subsequent maize (Zea mays L.) crop
    Peoples, Mark B.
    McLennan, Paul D.
    Brockwell, John
    PLANT AND SOIL, 2008, 307 (1-2) : 67 - 82