A rotating one-half topological charge dyon

被引:10
作者
Teh, Rosy [1 ]
Ng, Ban-Loong [1 ]
Wong, Khai-Ming [1 ]
机构
[1] Univ Sains Malaysia, Sch Phys, Usm Penang 11800, Malaysia
关键词
MILLS-HIGGS MONOPOLE; MULTIMONOPOLE SOLUTIONS; GAUGE;
D O I
10.1088/0954-3899/40/3/035004
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Recently, we have shown the existence of a finite energy one-half monopole. In this paper, we would like to introduce electric charge into the one-half monopole configuration, thus creating a one-half dyon. This one-half dyon possesses finite energy, a magnetic dipole moment and angular momentum. Hence it is able to rotate in the presence of an external magnetic field. Similarly to single pole dyons and MAP dyons, this one-half dyon possesses a critical (maximum) electric charge, total energy and magnetic dipole moment when the Higgs self-coupling constant is non-vanishing and the electric charge parameter approaches one. This one-half dyon solution does not satisfy the first order Bogomol'nyi equations and is a non-BPS solution in the limit of a vanishing Higgs self-coupling constant.
引用
收藏
页数:17
相关论文
共 48 条
  • [1] TOPOLOGY OF HIGGS FIELDS
    ARAFUNE, J
    FREUND, PGO
    GOEBEL, CJ
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (02) : 433 - 437
  • [2] INTEGRAL-EQUATIONS FOR EXTENDED SOLUTIONS IN FIELD-THEORY - MONOPOLES AND DYONS
    BAIS, FA
    PRIMACK, JR
    [J]. PHYSICAL REVIEW D, 1976, 13 (04): : 819 - 829
  • [3] BOGOMOLNYI EB, 1976, SOV J NUCL PHYS+, V24, P449
  • [4] BOGOMOLNYI EB, 1976, SOV J NUCL PHYS+, V23, P355
  • [5] Dyon-Skyrmion lumps
    Brihaye, Y
    Kleihaus, B
    Tchrakian, DH
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (03) : 1136 - 1152
  • [6] CAN ONE DENT A DYON
    COLEMAN, S
    PARKE, S
    NEVEU, A
    SOMMERFIELD, CM
    [J]. PHYSICAL REVIEW D, 1977, 15 (02): : 544 - 545
  • [7] Coleman S., 1975, NEW PHENOMENA SUBNUC, P297
  • [9] SOME COMMENTS ON MANY-DIMENSIONAL SOLITONS
    FADDEEV, LD
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1976, 1 (04) : 289 - 293
  • [10] Faddeev LD, 1976, P 6 INT C NONL FIELD, P207