Interplay of Self-Association and Solvation in Polar Liquids

被引:17
作者
Amenta, Valeria [1 ]
Cook, Joanne L. [1 ]
Hunter, Christopher A. [1 ]
Low, Caroline M. R. [2 ]
Sun, Hongmei [1 ]
Vinter, Jeremy G. [3 ]
机构
[1] Univ Sheffield, Dept Chem, Sheffield S3 7HF, S Yorkshire, England
[2] Univ London Imperial Coll Sci Technol & Med, Drug Discovery Facil, London SW7 2AY, England
[3] Cresset Biomol Discovery, Welwyn Garden City AL7 3AX, Herts, England
基金
英国工程与自然科学研究理事会;
关键词
HYDROGEN; SOLVENTS; NMR; THERMODYNAMICS; MIXTURES; ALCOHOLS; METHANOL; SPECTRA; SYSTEMS; AMIDES;
D O I
10.1021/ja405799q
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The association constants for formation a 1:1 complex between 4-phenyl azophenol and tri-n-butylphosphine oxide were measured in mixtures of n-octane and n-decanol, n-octane and n-hexanoic acid, and n-octane and 2-ethylhexyl acetamide. The experiments provide insight into the competition between solvent self-association and solvent-solute interactions in these systems. The solvation properties of the three polar solvents are quite different from one another and from polar solvents that do not self-associate. Carboxylic acids form dimers in concentrated solution (>1 mM in alkanes). Carboxylic acid dimers have exposed H-bond acceptor sites that solvate H-bond donor solutes with a similar binding affinity to carboxylic acid monomers. The carboxylic acid H-bond donor site is inaccessible in the dimer and is not available to solvate H-bond acceptor solutes. The result is that solvation of H-bond acceptor solutes is in competition with solvent dimerization, whereas solvation of H-bond donor solutes is not. Secondary amides form linear polymers in concentrated solution (>10 mM in alkanes). The solvation properties of the secondary amide aggregates are similar to those of carboxylic acid dimers. Solvation of H-bond acceptor solutes must compete with solvent self-association, because the amide H-bond donor site is not accessible in the middle of a polymeric aggregate. However, the amide aggregates have exposed H-bond acceptor sites, which solvate H-bond donor solutes with similar binding affinity to amide monomers. Alcohols form cyclic tetramers at concentrations of 100 mM in alkanes, and these cyclic aggregates are in equilibrium with linear polymeric aggregates at concentrations above 1 M. The alcohol aggregates have exposed H-bond acceptor sites that solvate H-bond donor solutes with similar binding affinity to alcohol monomers. Although the alcohol H-bond donor sites are involved in H-bond interactions with other alcohols in the aggregates, these sites are sufficiently exposed to form a second bifurcated H-bond with H-bond acceptor solutes, and these interactions have a similar binding affinity to alcohol monomers. The result is that self-association of alcohols does not compete with solvation of solutes, and alcohols are significantly more polar solvents than expected based on the properties of alcohol monomers. 0
引用
收藏
页码:12091 / 12100
页数:10
相关论文
共 39 条
[1]   HYDROGEN-BONDING .1. EQUILIBRIUM-CONSTANTS AND ENTHALPIES OF COMPLEXATION FOR MONOMERIC CARBOXYLIC-ACIDS WITH N-METHYLPYRROLIDINONE IN 1,1,1-TRICHLOROETHANE [J].
ABRAHAM, MH ;
DUCE, PP ;
SCHULZ, RA ;
MORRIS, JJ ;
TAYLOR, PJ ;
BARRATT, DG .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS I, 1986, 82 :3501-3514
[2]   Hydrogen Bonding between Solutes in Solvents Octan-1-ol and Water [J].
Abraham, Michael H. ;
Gola, Joelle M. R. ;
Cometto-Muniz, J. Enrique ;
Acree, William E., Jr. .
JOURNAL OF ORGANIC CHEMISTRY, 2010, 75 (22) :7651-7658
[3]   STATISTICAL THERMODYNAMICS OF LIQUID-MIXTURES - NEW EXPRESSION FOR EXCESS GIBBS ENERGY OF PARTLY OR COMPLETELY MISCIBLE SYSTEMS [J].
ABRAMS, DS ;
PRAUSNITZ, JM .
AICHE JOURNAL, 1975, 21 (01) :116-128
[4]   Influence of Solvent Polarity on Preferential Solvation of Molecular Recognition Probes in Solvent Mixtures [J].
Amenta, Valeria ;
Cook, Joanne L. ;
Hunter, Christopher A. ;
Low, Caroline M. R. ;
Vinter, Jeremy G. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (49) :14433-14440
[5]   Molecular recognition probes of solvation thermodynamics in solvent mixtures [J].
Amenta, Valeria ;
Cook, Joanne L. ;
Hunter, Christopher A. ;
Low, Caroline M. R. ;
Vinter, Jeremy G. .
ORGANIC & BIOMOLECULAR CHEMISTRY, 2011, 9 (21) :7571-7578
[6]   WHAT IS LIQUID - UNDERSTANDING STATES OF MATTER [J].
BARKER, JA ;
HENDERSON, D .
REVIEWS OF MODERN PHYSICS, 1976, 48 (04) :587-671
[7]  
Ben-Naim A., 1987, SOLVATION THERMODYNA
[8]   ANOMALOUS SPACE-GROUP FREQUENCIES FOR MONOALCOHOLS CNHMOH [J].
BROCK, CP ;
DUNCAN, LL .
CHEMISTRY OF MATERIALS, 1994, 6 (08) :1307-1312
[9]   The role of functional group concentration in solvation thermodynamics [J].
Buurma, Niklaas J. ;
Cook, Joanne L. ;
Hunter, Christopher A. ;
Low, Caroline M. R. ;
Vinter, Jeremy G. .
CHEMICAL SCIENCE, 2010, 1 (02) :242-246
[10]   Hydrogen bonding properties of non-polar solvents [J].
Cabot, Rafel ;
Hunter, Christopher A. ;
Varley, Lisa M. .
ORGANIC & BIOMOLECULAR CHEMISTRY, 2010, 8 (06) :1455-1462