Discrete Biquintic Spline Method for Fredholm Integral Equations of the Second Kind

被引:0
作者
Chen, Fengmin [1 ]
Wong, Patricia J. Y. [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
来源
2012 12TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS & VISION (ICARCV) | 2012年
关键词
discrete spline interpolation; Fredholm integral equations; numerical solution; ERROR INEQUALITIES; INTERPOLATION; HERMITE; WAVELETS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To find approximate solutions of Fredholm integral equations, we degenerate the kernels by discrete biquintic splines. Explicit a priori and posteriori error bounds are derived and a numerical example is presented to confirm the theoretical results.
引用
收藏
页码:1806 / 1811
页数:6
相关论文
共 30 条
  • [1] AGARWAL R. P., 1993, Error Inequalities in Polynomial Interpolation and Their Applications
  • [2] Product integration methods based on discrete spline quasi-interpolants and application to weakly singular integral equations
    Allouch, C.
    Sablonniere, P.
    Sbibih, D.
    Tahrichi, M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (11) : 2855 - 2866
  • [3] [Anonymous], 1967, BOUNDARY VALUE PROBL
  • [4] [Anonymous], 1966, Mixed Boundary Value Problems in Potential Theory
  • [5] DISCRETE L-SPLINES
    ASTOR, PH
    DURIS, CS
    [J]. NUMERISCHE MATHEMATIK, 1974, 22 (05) : 393 - 402
  • [6] Brunner H., 1999, CRM P LECT NOTES, P15
  • [7] CASE K. M., 1967, Linear Transport Theory
  • [8] Chen F., SOLUTIONS FREDHOLM I
  • [9] CHEN FD, J COMPUT AP IN PRESS
  • [10] Error inequalities for quintic and biquintic discrete Hermite interpolation
    Chen, Fengmin
    Wong, Patricia J. Y.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (16) : 4589 - 4600