This paper begins the study of infinite-dimensional modules defined on bicomplex numbers. It generalizes a number of results obtained with finite-dimensional bicomplex modules. The central concept introduced is the one of a bicomplex Hilbert space. Properties of such spaces are obtained through properties of several of their subsets which have the structure of genuine Hilbert spaces. In particular, we derive the Riesz representation theorem for bicomplex continuous linear functionals and a general version of the bicomplex Schwarz inequality. Applications to concepts relevant to quantum mechanics, specifically the bicomplex analogue of the quantum harmonic oscillator, are pointed out.
机构:
Univ Paris Diderot, CNRS UMR 7162, Lab Mat & Phenomenes Quant, Sorbonne Paris Cite, F-75013 Paris, FranceUniv Paris Diderot, CNRS UMR 7162, Lab Mat & Phenomenes Quant, Sorbonne Paris Cite, F-75013 Paris, France
Ketterer, A.
Keller, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 11, Inst Sci Mol Orsay, CNRS, F-91405 Orsay, FranceUniv Paris Diderot, CNRS UMR 7162, Lab Mat & Phenomenes Quant, Sorbonne Paris Cite, F-75013 Paris, France
Keller, A.
Walborn, S. P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, RJ, BrazilUniv Paris Diderot, CNRS UMR 7162, Lab Mat & Phenomenes Quant, Sorbonne Paris Cite, F-75013 Paris, France
机构:
Henan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
Henan Normal Univ, Henan Engn Lab Big Data Stat Anal & Optimal Contr, Xinxiang 453007, Henan, Peoples R ChinaHenan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
Song, Yisheng
Qi, Liqun
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R ChinaHenan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China